-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
170 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# %% | ||
import json | ||
import pandas as pd | ||
from sklearn.metrics import confusion_matrix, precision_score, recall_score, accuracy_score | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn.metrics import ConfusionMatrixDisplay | ||
|
||
# %% | ||
df = pd.read_csv("/mnt/bulk/isabella/llamaproj/MIMIC_groundtruth_TF.csv") | ||
df.head() | ||
|
||
#%% | ||
# # Rename column names in the dataframe | ||
# df = df.rename(columns={ | ||
# 'ascites': 'Ascites', | ||
# 'abdominal pain': 'Abdominal pain', | ||
# 'shortness of breath': 'Shortness of breath', | ||
# 'confusion': 'Confusion', | ||
# 'liver cirrhosis': 'Liver cirrhosis', | ||
# }) | ||
# df.head() | ||
|
||
# %% | ||
def parse(x): | ||
if x == 0: | ||
return "False" | ||
elif x == 1: | ||
return "True" | ||
else: | ||
return "False" | ||
|
||
|
||
def result_json_to_df(json_path): | ||
symptoms = [ | ||
"ascites", | ||
"abdominal pain", | ||
"shortness of breath", | ||
"confusion", | ||
"liver cirrhosis", | ||
] | ||
with open(json_path, "r") as json_file: | ||
records = [] | ||
for line in json_file: | ||
try: | ||
llama_response = json.loads(line) | ||
extracted_info = json.loads(llama_response["content"]) | ||
records.append( | ||
( | ||
llama_response["report"], | ||
*[ | ||
extracted_info[label] and extracted_info[label]["present"] | ||
for label in symptoms | ||
], | ||
) | ||
) | ||
except json.JSONDecodeError: | ||
continue | ||
|
||
pred_df = pd.DataFrame(records, columns=["report", *symptoms]) | ||
pred_df[symptoms] = pred_df[symptoms].applymap(parse) | ||
return pred_df | ||
|
||
|
||
#%% | ||
# gt_df = pd.read_csv("/mnt/bulk/isabella/llamaproj/MIMIC_groundtruth_TF.csv") | ||
gt_df = df | ||
symptoms = [ | ||
"ascites", | ||
"abdominal pain", | ||
"shortness of breath", | ||
"confusion", | ||
"liver cirrhosis", | ||
] | ||
# gt_df[symptoms] = gt_df[symptoms].map(parse) | ||
gt_df[symptoms] = gt_df[symptoms].applymap(parse) | ||
|
||
#%% | ||
pred_df = result_json_to_df(f"results-70b_binary_SYS_rq_cotgrammar.jsonl") | ||
pred_df.head() | ||
#%% | ||
df = gt_df.merge(pred_df, on="report", suffixes=[None, " pred"]) | ||
|
||
|
||
########################################################################### | ||
# Use seaborn | ||
########################################################################## | ||
# %% | ||
import pandas as pd | ||
import numpy as np | ||
import seaborn as sns | ||
import matplotlib.pyplot as plt | ||
from sklearn.metrics import confusion_matrix | ||
import numpy as np | ||
|
||
#%% | ||
# Assuming 'df' and 'symptoms' are defined as in your context | ||
for symptom in symptoms: | ||
y_true = df[symptom] | ||
y_pred = df[f"{symptom} pred"] | ||
|
||
# Compute the confusion matrix | ||
cm = confusion_matrix(y_true, y_pred, normalize='true') | ||
|
||
# Normalize the confusion matrix manually | ||
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | ||
|
||
# Convert to DataFrame for easier plotting | ||
cm_df = pd.DataFrame(cm, index=["False", "True"], columns=["False", "True"]) | ||
|
||
# Plotting the confusion matrix using Seaborn | ||
plt.figure(figsize=(8,6)) | ||
ax = sns.heatmap(cm_df, annot=True, fmt=".2f", cmap='Blues', vmin=0, vmax=1, | ||
annot_kws={"size": 28}) # Increase font size for annotations) | ||
plt.title(f'{symptom}', fontsize = 28) | ||
#plt.ylabel('Actual Values', fontsize=18) | ||
#plt.xlabel('Predicted Values', fontsize=18) | ||
|
||
# Set the font size for the tick labels (both axes) | ||
ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize = 28) | ||
ax.set_yticklabels(ax.get_ymajorticklabels(), fontsize = 28) | ||
|
||
|
||
# Increase font size of the colorbar | ||
cbar = ax.collections[0].colorbar | ||
cbar.ax.tick_params(labelsize=28) # Adjust to preferred size | ||
|
||
plt.show() | ||
|
||
|
||
# %% | ||
######################################################################### | ||
# Combine absolute values and fractions | ||
######################################################################### | ||
for symptom in symptoms: | ||
y_true = df[symptom] | ||
y_pred = df[f"{symptom} pred"] | ||
|
||
# Compute the confusion matrix (non-normalized for absolute numbers) | ||
cm_absolute = confusion_matrix(y_true, y_pred) | ||
|
||
# Normalize the confusion matrix for fractions | ||
cm_normalized = cm_absolute.astype('float') / cm_absolute.sum(axis=1)[:, np.newaxis] | ||
|
||
# Convert to DataFrame for easier plotting | ||
cm_df = pd.DataFrame(cm_normalized, index=["False", "True"], columns=["False", "True"]) | ||
|
||
# Create annotations combining absolute numbers and fractions | ||
annotations = [["{0:d}\n({1:.2f})".format(abs_num, frac) for abs_num, frac in zip(row_abs, row_frac)] | ||
for row_abs, row_frac in zip(cm_absolute, cm_normalized)] | ||
|
||
# Plotting the confusion matrix using Seaborn with increased font sizes | ||
plt.figure(figsize=(8,6)) | ||
ax = sns.heatmap(cm_df, annot=annotations, fmt="", cmap='Blues', vmin=0, vmax=1, annot_kws={"size": 28}) | ||
|
||
plt.title(f'{symptom.capitalize()}', fontsize=28) | ||
#plt.ylabel('Actual Values', fontsize=18) | ||
#plt.xlabel('Predicted Values', fontsize=18) | ||
|
||
# Set the font size for the tick labels (both axes) | ||
ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize = 28) | ||
ax.set_yticklabels(ax.get_ymajorticklabels(), fontsize = 28) | ||
|
||
# Increase font size of the colorbar | ||
cbar = ax.collections[0].colorbar | ||
cbar.ax.tick_params(labelsize=28) | ||
|
||
plt.show() | ||
|
||
# %% |