Collection of performance benchmarks used to present optimizations implemented for Intel(R) Distribution for Python*
To install Python environments from Intel channel along with pip-installed packages
conda env create -f environments/intel.yaml
conda activate intel_env
python numpy/umath/umath_mem_bench.py -v --size 10 --goal-time 0.01 --repeats 1
- To run python benchmarks:
python numpy/umath/umath_mem_bench.py
- To compile and run native benchmarks (requires
icx
):make -C numpy/umath
- To run python benchmarks:
python numpy/random/rng.py
- To compile and run native benchmarks (requires
icx
):make -C numpy/random
"Accelerating Scientific Python with Intel Optimizations" by Oleksandr Pavlyk, Denis Nagorny, Andres Guzman-Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, Sergey Maidanov. Proceedings of the 16th Python in Science Conference (SciPy 2017), July 10 - July 16, Austin, Texas