Skip to content

Commit

Permalink
Issue 566a (#570)
Browse files Browse the repository at this point in the history
* laurent and rational type issue

* use Laurent for promotion
  • Loading branch information
jverzani authored May 10, 2024
1 parent 263b965 commit 87f02db
Show file tree
Hide file tree
Showing 6 changed files with 80 additions and 37 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,10 @@ function offset_vector_combine(op, p::MutableDenseLaurentPolynomial{B,T,X}, q::M

end

# multiply by xⁿ
_shift(p::P, n::Int) where {P <: MutableDenseLaurentPolynomial} =
P(Val(false), p.coeffs, firstindex(p) + n)

function Base.numerator(q::MutableDenseLaurentPolynomial{B,T,X}) where {B,T,X}
p = chop(q)
o = firstindex(p)
Expand Down
4 changes: 4 additions & 0 deletions src/polynomials/standard-basis/laurent-polynomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,10 @@ function evalpoly(c, p::LaurentPolynomial{T,X}) where {T,X}
EvalPoly.evalpoly(c, p.coeffs) * c^p.order[]
end

# ---



# scalar add
function scalar_add(c::S, p::LaurentPolynomial{T,X}) where {S, T, X}
R = promote_type(T,S)
Expand Down
4 changes: 2 additions & 2 deletions src/promotions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,11 @@ Base.promote_rule(::Type{P}, ::Type{Q}) where {B,T,S,X,
Q<:AbstractLaurentUnivariatePolynomial{B,S,X}} = MutableDenseLaurentPolynomial{B,promote_type(T,S),X}



# Methods to ensure that matrices of polynomials behave as desired
Base.promote_rule(::Type{P},::Type{Q}) where {T,X, P<:AbstractPolynomial{T,X},
S, Q<:AbstractPolynomial{S,X}} =
Polynomial{promote_type(T, S),X}
LaurentPolynomial{promote_type(T, S),X}


Base.promote_rule(::Type{P},::Type{Q}) where {T,X, P<:AbstractPolynomial{T,X},
S,Y, Q<:AbstractPolynomial{S,Y}} =
Expand Down
21 changes: 2 additions & 19 deletions src/rational-functions/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,21 +49,6 @@ function Base.convert(::Type{PQ}, p::Number) where {PQ <: AbstractRationalFuncti
rational_function(PQ, p * one(P), one(P))
end

function Base.convert(::Type{PQ}, q::LaurentPolynomial) where {PQ <: AbstractRationalFunction}
m = firstindex(q)
if m >= 0
p = convert(Polynomial, q)
return convert(PQ, p)
else
z = variable(q)
zᵐ = z^(-m)
p = convert(Polynomial, zᵐ * q)
return rational_function(PQ, p, convert(Polynomial, zᵐ))
end

end


function Base.convert(::Type{PQ}, p::P) where {PQ <: AbstractRationalFunction, P<:AbstractPolynomial}
T′ = _eltype(_eltype((PQ)))
T = isnothing(T′) ? eltype(p) : T′
Expand All @@ -74,9 +59,6 @@ function Base.convert(::Type{PQ}, p::P) where {PQ <: AbstractRationalFunction, P
rational_function(PQ, 𝐩, one(𝐩))
end




function Base.convert(::Type{P}, pq::PQ) where {P<:AbstractPolynomial, PQ<:AbstractRationalFunction}
p,q = pqs(pq)
isconstant(q) || throw(ArgumentError("Can't convert rational function with non-constant denominator to a polynomial."))
Expand All @@ -97,7 +79,8 @@ function Base.promote_rule(::Type{PQ}, ::Type{PQ′}) where {T,X,P,PQ <: Abstrac
assert_same_variable(X,X′)
PQ_, PQ′_ = constructorof(PQ), constructorof(PQ′)
𝑷𝑸 = PQ_ == PQ′ ? PQ_ : RationalFunction
𝑷 = constructorof(typeof(variable(P)+variable(P′))); 𝑷 = Polynomial
𝑷 = constructorof(typeof(variable(P)+variable(P′)));
#𝑷 = Polynomial
𝑻 = promote_type(T,T′)
𝑷𝑸{𝑻,X,𝑷{𝑻,X}}
end
Expand Down
63 changes: 50 additions & 13 deletions src/rational-functions/rational-function.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,25 +47,51 @@ julia> derivative(pq)
struct RationalFunction{T, X, P<:AbstractPolynomial{T,X}} <: AbstractRationalFunction{T,X,P}
num::P
den::P
function RationalFunction(p::P, q::P) where {T,X, P<:AbstractPolynomial{T,X}}
function RationalFunction{T,X,P}(p, q) where {T,X, P<:AbstractPolynomial{T,X}}
new{T,X,P}(p, q)
end
function RationalFunction(p::P, q::T) where {T,X, P<:AbstractPolynomial{T,X}}
new{T,X,P}(p, q*one(P))
end
function RationalFunction(p::T, q::Q) where {T,X, Q<:AbstractPolynomial{T,X}}
new{T,X,Q}(p*one(Q), q)

end

function RationalFunction(p::P, q::P) where {T,X, P<:AbstractPolynomial{T,X}}
RationalFunction{T,X,P}(p, q)
end

RationalFunction(p::AbstractPolynomial{T,X}, q::AbstractPolynomial{S,X}) where {T,S,X} =
RationalFunction(promote(p,q)...)

function RationalFunction(p::P, q::T) where {T,X, P<:AbstractPolynomial{T,X}}
RationalFunction(p, (q * one(p)))
end
function RationalFunction(p::T, q::Q) where {T,X, Q<:AbstractPolynomial{T,X}}
RationalFunction(p * one(q), q)
end

function RationalFunction(p::P,q::P) where {T, X, P <: LaurentPolynomial{T,X}}

m,n = firstindex(p), firstindex(q)
p′,q′ = _shift(p, -m), _shift(q, -n)
if m-n 0
return RationalFunction{T,X,P}(_shift(p′, m-n), q′)
else
return RationalFunction{T,X,P}(p′, _shift(q′, n-m))
end
end

RationalFunction(p,q) = RationalFunction(convert(LaurentPolynomial,p), convert(LaurentPolynomial,q))
function RationalFunction(p::LaurentPolynomial,q::LaurentPolynomial)
𝐩 = convert(RationalFunction, p)
𝐪 = convert(RationalFunction, q)
𝐩 // 𝐪
# RationalFunction(p,q) = RationalFunction(convert(LaurentPolynomial,p), convert(LaurentPolynomial,q))


# special case Laurent
function lowest_terms(pq::PQ; method=:numerical, kwargs...) where {T,X,
P<:LaurentPolynomial{T,X}, #StandardBasisPolynomial{T,X},
PQ<:AbstractRationalFunction{T,X,P}}
p,q = pqs(pq)
p′,q′ = convert(Polynomial, p), convert(Polynomial,q)
u,v,w = uvw(p′,q′; method=method, kwargs...)
v′,w′ = convert(LaurentPolynomial, v), convert(LaurentPolynomial, w)
rational_function(PQ, v′/w′[end], w′/w′[end])
end
RationalFunction(p::LaurentPolynomial,q::Number) = convert(RationalFunction, p) // q
RationalFunction(p::Number,q::LaurentPolynomial) = q // convert(RationalFunction, p)


RationalFunction(p::AbstractPolynomial) = RationalFunction(p,one(p))

Expand All @@ -76,3 +102,14 @@ RationalFunction(p::AbstractPolynomial) = RationalFunction(p,one(p))
function Base.://(p::AbstractPolynomial,q::AbstractPolynomial)
RationalFunction(p,q)
end


# promotion
function Base.promote(pq::RationalFunction{T,X,P},
rs::RationalFunction{S,X,Q}) where {T,S,X,P<:AbstractPolynomial{T,X},
Q<:AbstractPolynomial{S,X}}
𝑃 = promote_type(P, Q)
p,q = pq
r,s = rs
(convert(𝑃,p) // convert(𝑃,q), convert(𝑃,r) // convert(𝑃,s))
end
21 changes: 18 additions & 3 deletions test/rational-functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ using LinearAlgebra
# constructor
@test p // q isa RationalFunction
@test p // r isa RationalFunction
@test_throws ArgumentError r // s
@test_throws MethodError r // s
@test RationalFunction(p) == p // one(p)

pq = p // t # promotes to type of t
Expand Down Expand Up @@ -76,6 +76,21 @@ using LinearAlgebra
@test numerator(p) == p * variable(p)^2
@test denominator(p) == convert(Polynomial, variable(p)^2)

# issue 566
q = LaurentPolynomial([1], -1)
p = LaurentPolynomial([1], 1)
@test degree(numerator(q // p)) == 0 # q/p = 1/x^2
@test degree(denominator(q // p)) == 2

@test degree(numerator(p // q)) == 2 # p/q = x^2 / 1
@test degree(denominator(p // q)) == 0

@test degree(numerator(q // q^2)) == 1
@test degree(denominator(q // q^2)) == 0

@test degree(numerator(q^2 // q)) == 0
@test degree(denominator(q^2 // q)) == 1

end

@testset "zeros, poles, residues" begin
Expand Down Expand Up @@ -112,7 +127,7 @@ end
p, q = Polynomial([1,2], :x), Polynomial([1,2],:y)
pp = p // (p-1)
PP = typeof(pp)

PP′ = RationalFunction{Int64, :x, LaurentPolynomial{Int64, :x}}
r, s = SparsePolynomial([1,2], :x), SparsePolynomial([1,2],:y)
rr = r // (r-1)

Expand All @@ -124,7 +139,7 @@ end
# @test eltype(eltype(eltype([im, p, pp]))) == Complex{Int}

## test mixed types promote polynomial type
@test eltype([pp rr p r]) == PP
@test eltype([pp rr p r]) == PP# promotes to LaurentPolynomial

## test non-constant polys of different symbols throw error
@test_throws ArgumentError [pp, q]
Expand Down

0 comments on commit 87f02db

Please sign in to comment.