Skip to content

C++ Implementations of sketch data structures with SIMD Parallelism, including Python bindings

License

Notifications You must be signed in to change notification settings

LinoHofstetter/sketch

 
 

Repository files navigation

sketch Build Status Documentation Status

sketch is a generic, header-only library providing implementations of a variety of sketch data structures for scalable and streaming applications. All have been accelerated with SIMD parallelism where possible, most are composable, and many are threadsafe unless -DNOT_THREADSAFE is passed as a compilation flag.

Python documentation

Documentation for the Python interface is available here.

Dependencies

We directly include blaze-lib, libpopcnt, compact_vector, ska::flat_hash_map, and xxHash for various utilities. We also have two submodules:

  • pybind11, only used for python bindings.
  • SLEEF for vectorized math, incorporated with vec.h. It's optionally used (disabled by defining -DNO_SLEEF=1/#define NO_SLEEF 1) and only applicable to using rnla.h through blaze-lib.

You can ignore both for most use cases.

Contents

  1. HyperLogLog Implementation [hll.h]
    1. hll_t/hllbase_t<HashStruct>
    2. Estimates the cardinality of a set using log(log(cardinality)) bits.
    3. Threadsafe unless -DNOT_THREADSAFE is passed.
    4. Currently, hll is the only structure for which python bindings are available, but we intend to extend this in the future.
  2. HyperBitBit [hbb.h]
    1. Better per-bit accuracy than HyperLogLogs, but, at least currently, limited to 128 bits/16 bytes in sketch size.
  3. Bloom Filter [bf.h]
    1. bf_t/bfbase_t<HashStruct>
    2. Naive bloom filter
    3. Currently not threadsafe.
  4. Count-Min and Count Sketches
    1. ccm.h (ccmbase_t<UpdatePolicy=Increment>/ccm_t (use pccm_t for Approximate Counting or cs_t for a count sketch).
    2. The Count sketch is threadsafe if -DNOT_THREADSAFE is not passed or if an atomic container is used. Count-Min sketches are currently not threadsafe due to the use of minimal updates.
    3. Count-min sketches can support concept drift if realccm_t from mult.h is used.
  5. MinHash sketches
    1. mh.h (RangeMinHash is the currently verified implementation.) We recommend you build the sketch and then convert to a linear container (e.g., a std::vector) using to_container<ContainerType>() or .finalize() for faster comparisons.
      1. BottomKHasher is an alternate that uses more space to reduce runtime, which finalizes() into the same structure.
    2. CountingRangeMinHash performs the same operations as RangeMinHash, but provides multiplicities, which facilitates histogram_similarity, a generalization of Jaccard with multiplicities.
    3. Both CountingRangeMinHash and RangeMinHash can be finalized into containers for fast comparisons with .finalize().
    4. A draft HyperMinHash implementation is available as well, but it has not been thoroughly vetted.
    5. Range MinHash implementationsare not threadsafe.
    6. HyperMinHash implementation is threa
  6. B-Bit MinHash
    1. bbmh.h
    2. One-permutation (partition) bbit minhash
      1. Threadsafe, bit-packed and fully SIMD-accelerated
      2. Power of two partitions are supported in BBitMinHasher, which is finalized into a FinalBBitMinHash sketch. This is faster than the alternative.
      3. We also support arbitrary divisions using fastmod64 with DivBBitMinHasher and its corresponding final sketch, FinalDivBBitMinHash.
    3. One-permutation counting bbit minhash
      1. Not threadsafe.
  7. ModHash sketches
    1. mod.h
    2. Estimates both containment and jaccard index, but takes a (potentially) unbounded space.
    3. This returns a FinalRMinHash sketch, reusing the infrastructure for minhash sketches, but which calculates Jaccard index and containment knowing that it was generated via mod, not min.
  8. HeavyKeeper
    1. hk.h
    2. Reference: https://www.usenix.org/conference/atc18/presentation/gong
    3. A seemingly unilateral improvement over count-min sketches.
      1. One drawback is the inability to delete items, which makes it unsuitable for sliding windows.
      2. It shares this characteristic with the Count-Min sketch with conservative update and the Count-Min Mean sketch.
  9. ntcard
    1. mult.h
    2. Threadsafe
    3. Reference: https://www.ncbi.nlm.nih.gov/pubmed/28453674
    4. Not SIMD-accelerated, but also general, supporting any arbitrary coverage level
  10. PCSA
    1. pc.h
    2. The HLL is more performant and better-optimized, but this is included for completeness.
    3. Not threadsafe.
    4. Reference: https://dl.acm.org/doi/10.1016/0022-0000%2885%2990041-8 Journal of Computer and System Sciences. September 1985 https://doi.org/10.1016/0022-0000(85)90041-8
  11. SetSketch
    1. See setsketch.h for continuous and discretized versions of the SetSketch.
    2. This also includes parameter-setting code.

Test case

To build and run the hll test case:

make test && ./test

Example

To use as a header-only library:

using namespace sketch;
hll::hll_t hll(14); // Use 2**14 bytes for this structure
// Add hashed values for each element to the structure.
for(uint64_t i(0); i < 10000000ull; ++i) hll.addh(i);
fprintf(stderr, "Elements estimated: %lf. Error bounds: %lf.\n", hll.report(), hll.est_err());

The other structures work with a similar interface. See the type constructors for more information or view 10xdash for examples on using the same interface for a variety of data structures.

Simply #include sketch/<header_name>, or, for one include #include <sketch/sketch.h>, which allows you to write sketch::bf_t and sketch::hll_t without the subnamespaces.

We use inline namespaces for individual types of sketches, e.g., sketch::minhash or sketch::hll can be used for clarity, or sketch::hll_t can be used, omitting the hll namespace.

OSX Installation

Clang on OSX may fail to compile in AVX512 mode. We recommend using homebrew's gcc:

homebrew upgrade gcc || homebrew install gcc

and either setting the environmental variables for CXX and CC to the most recent g++/gcc or providing them as Makefile arguments. At the time of writing, this is g++-10 and gcc-10.

Multithreading

By default, updates to the hyperloglog structure to occur using atomic operations, though threading should be handled by the calling code. Otherwise, the flag -DNOT_THREADSAFE should be passed. The cost of this is relatively minor, but in single-threaded situations, this would be preferred.

Python bindings

Python bindings are available via pybind11. Simply cd python && python setup.py install.

The package has been renamed to sketch_ds as of v0.19

Utilities include: 1. Sketching/serialization for sketch data structures 1. Supported: sketch_ds.bbmh.BBitMinHasher, sketch_ds.bf.bf, sketch_ds.hmh.hmh, sketch_ds.hll.hll 2. shs_isz, which computes the intersection size of sorted hash sets. 1. Supported: {uint,int}{32,64}, float32, float64 3. fastmod/fastdiv, which uses the fast modulo reduction to do faster division/mod than numpy. 1. Supportd: {uint,int}{32,64} 4. matrix generation functions - taking a list of sketches and creating the similarity function matrix. 1. Supported: sketch_ds.bbmh.BBitMinHasher, sketch_ds.bf.bf, sketch_ds.hmh.hmh, sketch_ds.hll.hll 2. Types: "jaccard_matrix", "intersection_matrix", "containment_matrix", "union_size_matrix", "symmetric_containment_matrix" 3. Returns a compressed distance matrix. 5. ccount_eq, pcount_eq compute the number of identical registers between integral registers. 1. Inspired by cdist and pdist from scipy.spatial.distance 2. ccount_eq computes the number of identical registers between all pairs of rows between two matrices A and B. 1. Size of returned matrix: (A.shape[0], A.shape[1]) 3. pcount_eq computes the number of identical registers between all pairs of rows in a single matrix A. 1. Size of returned matrix: (A.shape[0] * (A.shape[0]) - 1) / 2 4. pcount_eq output can be transformed from similarities to distances via -np.log(distmat / A.shape[1]).

About

C++ Implementations of sketch data structures with SIMD Parallelism, including Python bindings

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 97.9%
  • C 1.8%
  • CMake 0.2%
  • Cuda 0.1%
  • Python 0.0%
  • Makefile 0.0%