Skip to content

Simple food image classifier using TensorFlow and Keras. Designed to recognize and categorize various food dishes from images.

Notifications You must be signed in to change notification settings

ManuPer3z/Food-Image-Classifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 

Repository files navigation

Food Image Classifier

A simple convolutional neural network to classify food images using TensorFlow and Keras.

Setup

Ensure you have TensorFlow installed:

pip install tensorflow

Loading and Data Preparation:

Assuming you have the Food-101 dataset:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Directories for data (adjust paths accordingly)
train_dir = 'path_to_food101_dataset/train'
validation_dir = 'path_to_food101_dataset/validation'

# Image preprocessing
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
    train_dir,
    target_size=(150, 150),
    batch_size=20,
    class_mode='categorical')

validation_generator = validation_datagen.flow_from_directory(
    validation_dir,
    target_size=(150, 150),
    batch_size=20,
    class_mode='categorical')

Building the Model:

from tensorflow.keras import layers
from tensorflow.keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(101, activation='softmax'))  # 101 classes in Food-101 dataset

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
Training:

history = model.fit(
    train_generator,
    steps_per_epoch=100,
    epochs=30,
    validation_data=validation_generator,
    validation_steps=50)

Evaluation and Prediction:

# Evaluation
test_loss, test_acc = model.evaluate(validation_generator, steps=50)
print('Test accuracy:', test_acc)

# Prediction
from tensorflow.keras.preprocessing import image
import numpy as np

img_path = 'path_to_test_image.jpg'
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.

predictions = model.predict(img_tensor)
predicted_class = np.argmax(predictions[0])

About

Simple food image classifier using TensorFlow and Keras. Designed to recognize and categorize various food dishes from images.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published