Respiratory Modulation with Morphological Autoencoders for Anomaly Detection. Experiments with two datasets (sleep apnea and breathing exercises). This work was featured here:
Abreu, M., Fred, A., Valente, J., Wang, C., & da Silva, H. P. (2020). Morphological autoencoders for apnea detection in respiratory gating radiotherapy. Computer Methods and Programs in Biomedicine, 195, 105675.
- Preprocessing of two databases: Apnea-EEG and BrainAnswer-RGBT
- Respiratory Modulation with Autoencoders
- Classification
- Visualization
- Python 3.8+
- Any other software or libraries needed
- Clone the repository
git clone https://github.com/username/repository-name.git
- Navigate to the project directory
cd repository-name
- Create a virtual environment
python3 -m venv venv
- Activate the virtual environment
- On Windows
venv\Scripts\activate
- On macOS and Linux
source venv/bin/activate
- On Windows
- Install the required dependencies
pip install -r requirements.txt
Respiration Apnea Classification.ipynb