Skip to content

MingtaoGuo/yolo_v1_v2_tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

yolo1_tensorflow

Simple implementation of yolo v1 and yolo v2 by TensorFlow

Introduction

Paper yolo v1: You Only Look Once: Unified, Real-Time Object Detection

Paper yolo v2: YOLO9000: Better, Faster, Stronger

The code of yolo v2, we use 9 anchors which is calculated by k-means on COCO dataset.

data augmentation pretrained vgg16 pretrained darknet
✔️

What is normalized offset?

Requirements

==============

  1. python3.5
  2. tensorflow1.4.0
  3. pillow
  4. numpy
  5. scipy

Pretrained VGG16: Google Drive: https://drive.google.com/open?id=1LTptCY96ABAUlJHUJq6MhqNrDQN7JfQP

Dataset: Pascal voc 2007: https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar

==============

Results

Reference

[1]. Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

[2]. Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.

About

Simple implementation of yolo v1 and yolo v2 by TensorFlow

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages