Imaging single molecules in living cells with fluorescence microscopy offers unparalleled datasets that we use to crack unsolved problems in cell biology. Unfortunately, high light doses necessary to acquire high resolution images are harmful to cells, which severely limits our ability to visualize biological processes over long periods of time. We want to use deep learning to dramatically lower the light doses used in fluorescence microscopy while retaining high signal-to-noise ratio. This will allow us to perform experiments that are currently impossible.
Make sure to include this in your .bashrc
export PATH=/gpfs/share/skynet/apps/anaconda3/bin:$PATH
ssh @skynet.nyumc.org
source activate tensorflow-env
source /opt/DL/tensorflow/bin/tensorflow-activate
source /opt/DL/tensorboard/bin/tensorboard-activate
To Activate Pytorch
source activate pytorch-env
source /opt/DL/pytorch/bin/pytorch-activate
pase the following contents https://docs.google.com/document/d/1vAHun95oxFvRzQLtTvMPEXe_zUnt5o_ywUFZERazolA/edit
bsub -Is -gpu "num=2:mode=exclusive_process:mps=yes" bash submit-jupyter.sh
- The command looks like "ssh -N -L {port}:skygpu11:{port} @skynet.nyumc.org"
- Paste this command into a new terminal.
- change skygpu to localhost, i.e.:
- http://localhost:9770/?token=
In order to make folders/files accessible to everyone, run the following
- chown :lionnetlab path/to/dir
Run notebook without GPUs:
- bsub -Is bash submit-jupyter.sh
Example for bsub python submission:
-
bsub -Is -gpu "num=1:mode=exclusive_process:mps=yes" python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
-
bsub -Is -gpu "num=1:mode=exclusive_process:mps=yes" python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA --gpu 0 --display_id 0