Skip to content

Commit

Permalink
Merge pull request #21 from nfancy/master
Browse files Browse the repository at this point in the history
removed makeCluster function

Former-commit-id: f49152a
  • Loading branch information
NathanSkene authored Oct 8, 2020
2 parents eb65c02 + c6ea14a commit 760589b
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions R/generate.celltype.data.r
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
#' @param exp Numerical matrix with row for each gene and column for each cell. Row names are MGI/HGNC gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame.
#' @param annotLevels List with arrays of strings containing the cell type names associated with each column in exp
#' @param groupName A human readable name for refering to the dataset being loaded
#' @param no_cores Number of cores that should be used to speedup the computation
#' @param no_cores Number of cores that should be used to speedup the computation. Use no_cores = 1 when using this package in windows system.
#' @param savePath Directory where the CTD file should be saved
#' @return Filenames for the saved celltype_data files
#' @examples
Expand All @@ -32,8 +32,8 @@ generate.celltype.data <- function(exp,annotLevels,groupName,no_cores=1,savePath

# Calculate the number of cores

cl <- parallel::makeCluster(no_cores)
print(sprintf("Using %s cores",no_cores))
#cl <- parallel::makeCluster(no_cores)
#print(sprintf("Using %s cores",no_cores))

# First, check the number of annotations equals the number of columns in the expression data
lapply(annotLevels,test <- function(x,exp){if(length(x)!=dim(exp)[2]){stop("Error: length of all annotation levels must equal the number of columns in exp matrix")}},exp)
Expand Down Expand Up @@ -85,7 +85,7 @@ generate.celltype.data <- function(exp,annotLevels,groupName,no_cores=1,savePath

ctd3 = mclapply(ctd2,calculate.specificity.for.level,mc.cores=no_cores)
ctd=ctd3
stopCluster(cl)
#stopCluster(cl)

# Use the rank norm transformation on specificity
rNorm <- function(ctdIN){ bbb = t(apply(ctdIN$specificity,1,RNOmni::rankNorm)); return(bbb) }
Expand Down

0 comments on commit 760589b

Please sign in to comment.