Skip to content

Commit

Permalink
added Sessions 4-6
Browse files Browse the repository at this point in the history
  • Loading branch information
PGelss authored Jun 4, 2024
1 parent b06c81e commit 4df5ab1
Show file tree
Hide file tree
Showing 3 changed files with 816 additions and 0 deletions.
174 changes: 174 additions & 0 deletions Exercises/Session 4 - Quantum Information.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "e4f44eb7",
"metadata": {},
"source": [
"<h1 style=\"text-align: center;\"><b>TMQS Workshop 2024</b> @ Zuse Institute Berlin</h1>\n",
"<h2 style=\"text-align: center;\">Summer School on Tensor Methods for Quantum Simulation</h2>\n",
"<h2 style=\"text-align: center;\">June 3 - 5, 2024</h2>\n",
"$\\def\\tcoreleft{\\textcolor{MidnightBlue}{\\Huge⦸}}$\n",
"$\\def\\tcorecenter{\\textcolor{RedOrange}{\\Huge⦿}}$\n",
"$\\def\\tcoreright{\\textcolor{MidnightBlue}{\\Huge\\oslash}}$\n",
"<div style=\"text-align: center; background-color:#D6EAF8;padding-top:20px;padding-bottom:5px\">\n",
"<table style=\"font-size:16pt\">\n",
" <tr style=\"background-color:#D6EAF8;\">\n",
" <td>$\\tcoreleft$</td>\n",
" <td>$-$</td>\n",
" <td>$\\tcoreleft$</td>\n",
" <td>$-$</td>\n",
" <td>$\\tcoreleft$</td>\n",
" <td>$-$</td>\n",
" <td>$\\cdots$</td>\n",
" <td>$-$</td>\n",
" <td>$\\tcorecenter$</td>\n",
" <td>$-$</td>\n",
" <td>$\\cdots$</td>\n",
" <td>$-$</td>\n",
" <td>$\\tcoreright$</td>\n",
" <td>$-$</td>\n",
" <td>$\\tcoreright$</td>\n",
" </tr>\n",
" <tr style=\"background-color:#D6EAF8;\">\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" <td></td>\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" <td></td>\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" <td></td>\n",
" <td></td>\n",
" <td></td>\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" <td></td>\n",
" <td style=\"text-align: center;\">$\\tiny\\mid$</td>\n",
" </tr>\n",
"</table>\n",
"</div>"
]
},
{
"cell_type": "markdown",
"id": "6f6cc702",
"metadata": {},
"source": [
"***"
]
},
{
"cell_type": "markdown",
"id": "74ce99d5-268a-4ad8-980b-de19d60b6be6",
"metadata": {},
"source": [
"## **Session 4 - Quantum Information**"
]
},
{
"cell_type": "markdown",
"id": "e8441c54-ffd4-45b4-ab04-ff8cf85e6474",
"metadata": {},
"source": [
"***"
]
},
{
"cell_type": "markdown",
"id": "a781c1c8",
"metadata": {},
"source": [
"## Exercise 4.1\n",
"\n",
"Which of the following are valid quantum states?\n",
"\n",
"$\\hspace{1cm}$$\\begin{pmatrix} 0 \\\\ 1\\end{pmatrix}$, $\\quad \\begin{pmatrix} 1 \\\\ 1\\end{pmatrix}$, $\\quad \\frac{1}{\\sqrt{2}}\\begin{pmatrix} 0 \\\\ -i\\end{pmatrix}$, $\\quad \\frac{1}{\\sqrt{3}}\\begin{pmatrix} 1 \\\\ 2\\end{pmatrix}$, $\\quad \\begin{pmatrix} \\sqrt{2/3} \\\\ i/\\sqrt{3}\\end{pmatrix}$\n",
"\n",
"What is the probability to measure $0$ and $1$ for the valid quantum states?"
]
},
{
"cell_type": "markdown",
"id": "6e1b9898-10a5-422d-8cdb-a8f42bdc01c4",
"metadata": {},
"source": [
"***"
]
},
{
"cell_type": "markdown",
"id": "0e8243a2-a54e-4aaf-b460-f1f7f9e369b0",
"metadata": {},
"source": [
"## Exercise 4.2\n",
"\n",
"**a)**$\\quad$Write down the state vector of two quantum states \n",
"\n",
"$\\hspace{1cm}$$\\displaystyle|\\Psi_1\\rangle = \\alpha_1 |0\\rangle + \\beta_1 |1\\rangle \\quad $ and $\\quad |\\Psi_2\\rangle = \\alpha_2 |0\\rangle + \\beta_2 |1\\rangle$, \n",
"\n",
"$\\hspace{0.35cm}$$\\quad$i.e. the tensor product, in the computational basis. Write down the basis vectors of the composite system.\n",
"\n",
"**b)**$\\quad$Consider the $2$-qubit state \n",
"\n",
"$\\hspace{1cm}$$\\displaystyle|\\Psi\\rangle = \\frac{1}{\\sqrt{2}} |00\\rangle + \\frac{1}{2}|01\\rangle + \\frac{1}{2} |11\\rangle$. \n",
"\n",
"$\\hspace{0.35cm}$$\\quad$What is the state after a measurement of the first qubit where you obtain $|0\\rangle$?\n",
"\n",
"$\\hspace{0.35cm}$$\\quad$Is this an entangled state?\n",
"\n",
"$\\hspace{0.35cm}$$\\quad$*Hint:* Quantum states are normalized!"
]
},
{
"cell_type": "markdown",
"id": "818bf57f-be0c-408a-9776-414578b7763a",
"metadata": {},
"source": [
"***"
]
},
{
"cell_type": "markdown",
"id": "bed85201-1bfb-45a2-a57a-44332f370276",
"metadata": {},
"source": [
"## Exercise 4.3\n",
"\n",
"Suppose you have $n + 1$ qubits. We will write $|\\vec{x}\\rangle$ to mean the $n$-qubit classical state given by the number $x$ in binary. For instance, if $n = 2$ then:\n",
"\n",
"$\\hspace{0.5cm}$$|\\vec{0}\\rangle = |00\\rangle , \\quad |\\vec{1}\\rangle = |01\\rangle, \\quad |\\vec{2}\\rangle = |10\\rangle, \\quad |\\vec{3}\\rangle = |11\\rangle$.\n",
"\n",
"Assume the qubits are in the state\n",
"\n",
"$\\hspace{0.5cm}$$\\displaystyle |\\Psi\\rangle = \\frac{1}{\\sqrt{2^n}} \\sum_{x=0}^{2^n -1} | \\vec{x} \\rangle \\otimes | x~\\text{mod}~2 \\rangle$.\n",
"\n",
"**a)**$\\quad$What is the resulting state if we measure the last qubit and obtain $|0\\rangle$?\n",
"\n",
"**b)**$\\quad$What is the resulting state if we measure the last qubit and obtain $|1\\rangle$?"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading

0 comments on commit 4df5ab1

Please sign in to comment.