This repo is a visualization implementation for KITTI dataset, Waymo open dataset and nuScense dataset in python.
It is tested with python 3.9.
- Environments
pip install -r .\requirements.txt
To use nuScenes dataset
pip install nuscenes-devkit==1.1.9
To use waymo open dataset
pip install tensorflow==2.5.0 -i https://pypi.org/simple/
You can easily visualize your point clouds and bounding box by this repo with Nx3 (Nx4 if with intensity) np.array for point clouds and Nx7 np.array for 3d bounding boxes. There is a demo that can be a reference
python demo.py
You can download the KITTI Dataset from http://www.cvlibs.net/datasets/kitti/raw_data.php
The directory structure is as follow
└─KITTI Dataset path
├─testing
│ ├─calib
│ ├─image_2
│ └─velodyne
└─training
├─calib
├─image_2
├─label_2
└─velodyne
runnning
python kitti_vis_single.py --dataset <dataset_path> --file_index <file_index>
You can download the Waymo Open Dataset from https://waymo.com/open/data/perception/
Then you can visualize single tfrecord file as follow
python waymo_vis_sequence.py --filepath <tfrecode_file_path>
You can download the nuScense Dataset from https://www.nuscenes.org/download
The directory structure is as follow
└─nuScense Dataset path
├─maps
├─samples
├─sweeps
│ ├─LIDAR_TOP
│ ├─...
├─v1.0-trainval
...
runnning
python nuscense_vis_sequence.py --rootpath <nuScense_root_path>