Skip to content

StarXian/scRNA.seq.course

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About the course

Today it is possible to obtain genome-wide transcriptome data from single cells using high-throughput sequencing (scRNA-seq). The main advantage of scRNA-seq is that the cellular resolution and the genome wide scope makes it possible to address issues that are intractable using other methods, e.g. bulk RNA-seq or single-cell RT-qPCR. However, to analyze scRNA-seq data, novel methods are required and some of the underlying assumptions for the methods developed for bulk RNA-seq experiments are no longer valid.

In this course we will discuss some of the questions that can be addressed using scRNA-seq as well as the available computational and statistical methods avialable. The course is taught through the University of Cambridge Bioinformatics training unit, but the material found on these pages is meant to be used for anyone interested in learning about computational analysis of scRNA-seq data. The course is taught twice per year and the material here is updated prior to each event.

The number of computational tools is increasing rapidly and we are doing our best to keep up to date with what is available. One of the main constraints for this course is that we would like to use tools that are implemented in R and that run reasonably fast. Moreover, we will also confess to being somewhat biased towards methods that have been developed either by us or by our friends and colleagues.

Web page

http://hemberg-lab.github.io/scRNA.seq.course

Video

This video was recorded in November 2017, at that time the course contained less chapters than the current version.

https://www.youtube.com/embed/IrlNcJwPClQ?list=PLEyKDyF1qdObdFBc3JncwXAnMUHlcd0ap

Registration

Please follow this link and register for the "Analysis of single cell RNA-seq data" course: http://training.csx.cam.ac.uk/bioinformatics/search

GitHub

https://github.com/hemberg-lab/scRNA.seq.course

Docker image

Docker Repository on Quay

The course can be reproduced without any package installation by running the course docker RStudio image which contains all the required packages.

Make sure Docker is installed on your system. If not, please follow these instructions. To run the course RStudio docker image:

docker run -d -p 8787:8787 quay.io/hemberg-group/scrna-seq-course-rstudio

This downloads the docker image (may take some time) and start a new Rstudio session in a docker container with all packages installed and all data files available.

Then visit localhost:8787 in your browser and log in with username:password as rstudio:rstudio. Now you are ready to go!

More details on how ot run RStudio docker with different options can be found here.

Manual installation

If you are not using a docker image of the course, then to be able to run all code chunks of the course you need to clone or download the course GitHub repository and start an R session in the cloned folder. You will also need to install all packages listed in the course docker files: Dockerfile1 and Dockerfile2.

Alternatively, you can just install packages listed in a chapter of interest.

License

All of the course material is licensed under GPL-3. Anyone is welcome to go through the material in order to learn about analysis of scRNA-seq data. If you plan to use the material for your own teaching, we would appreciate if you tell us about it in addition to providing a suitable citation.

Prerequisites

The course is intended for those who have basic familiarity with Unix and the R scripting language.

We will also assume that you are familiar with mapping and analysing bulk RNA-seq data as well as with the commonly available computational tools.

We recommend attending the Introduction to RNA-seq and ChIP-seq data analysis or the Analysis of high-throughput sequencing data with Bioconductor before attending this course.

Contact

If you have any comments, questions or suggestions about the material, please contact Vladimir Kiselev.

About

Analysis of single cell RNA-seq data course

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TeX 51.0%
  • Python 23.4%
  • Perl 13.5%
  • R 5.2%
  • CSS 3.6%
  • HTML 2.3%
  • Shell 1.0%