Skip to content

The easiest tool to visualize feature maps for TensorFlow.

License

Notifications You must be signed in to change notification settings

ThoroughImages/ThoroughVis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License: MIT

ThoroughVis

East to Use

python conv_vis.py            
   --model                    # Checkpoint path.
   --image_path               # Path of the input image for CNN.
   --output_dir               # Output directory for feature maps. 

The model repo should contain (for example):

export.ckpt:      Trained model parameters.
export.ckpt.meta: Model structure.

Search for Data Entrance Automatically

Given the input image, the program automatically finds all the Placeholders in the computing graph and searches for the best-matched ones to feed the image into.

Two debug trials once ThoroughVis fails:

  1. Resize the input image to match the target data entrance.
  2. Make sure the target Placeholder is correctly defined in the computing graph.

Default Placeholder Feed-In

The program will automatically acquire all the Placeholders and feed them with default zero values to make the computing graph flow properly.

tf.bool:         False
tf.int32:        0
tf.int64:        0
tf.float16:      0.0
tf.float32:      0.0
tf.array(shape): numpy.zeros(shape)

Our team will add self-defined feed-in support in the next update.

Minimum Requirement

tensorflow
numpy 
matplotlib
uuid

Licence

MIT

About

The easiest tool to visualize feature maps for TensorFlow.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages