python conv_vis.py
--model # Checkpoint path.
--image_path # Path of the input image for CNN.
--output_dir # Output directory for feature maps.
The model repo should contain (for example):
export.ckpt: Trained model parameters.
export.ckpt.meta: Model structure.
Given the input image, the program automatically finds all the Placeholders
in the computing graph and searches for the best-matched ones
to feed the image into.
Two debug trials once ThoroughVis fails:
- Resize the input image to match the target data entrance.
- Make sure the target
Placeholder
is correctly defined in the computing graph.
The program will automatically acquire all the Placeholders
and feed them with default zero values to make the computing graph flow properly.
tf.bool: False
tf.int32: 0
tf.int64: 0
tf.float16: 0.0
tf.float32: 0.0
tf.array(shape): numpy.zeros(shape)
Our team will add self-defined feed-in support in the next update.
tensorflow
numpy
matplotlib
uuid
MIT