Skip to content

Commit

Permalink
xy to tikz: convert the preimage diagram
Browse files Browse the repository at this point in the history
  • Loading branch information
favonia committed Feb 12, 2023
1 parent 156fd03 commit 34cfbbe
Showing 1 changed file with 26 additions and 5 deletions.
31 changes: 26 additions & 5 deletions subgroups.tex
Original file line number Diff line number Diff line change
Expand Up @@ -337,11 +337,32 @@ \subsection{Kernels and cokernels}
\end{xca}


The kernel, cokernel and image constructions satisfy a lot of important relations which we will review in a moment, but in our setup many of them are just complicated ways of interpreting the following fact about preimages (see the illustration\footnote{$$\xymatrix{
F_2^{-1}(x_1,p_2)\ar[r]^H_\simeq\ar[d]_{\fst}&f_1^{-1}(x_1)\ar[d]^{\fst}\ar[dl]_{F_1}&\\
(f_2f_1)^{-1}(x_2)\ar[r]^{\fst}\ar[d]^{F_2}&X_0\ar[r]^{f_2f_1}\ar[d]^{f_1}&X_2\ar@{=}[d]\\
f_2^{-1}(x_2)\ar[r]^{\fst}&X_1\ar[r]^{f_2}&X_2.}
$$} in the margin for an overview)
The kernel, cokernel and image constructions satisfy a lot of important relations which we will review in a moment, but in our setup many of them are just complicated ways of interpreting the following fact about preimages (see the illustration\footnote{
\[
\begin{tikzpicture}[scale=1.5]
\path (-.5,2) node (02) {$F_2^{-1}(x_1,p_2)$}
(1,2) node (12) {$f_1^{-1}(x_1)$}
(-.5,1) node (01) {$(f_2f_1)^{-1}(x_2)$}
(1,1) node (11) {$X_0$}
(2,1) node (21) {$X_2$}
(-.5,0) node (00) {$f_2^{-1}(x_2)$}
(1,0) node (10) {$X_1$}
(2,0) node (20) {$X_2$};
\draw[->]
(02) edge node[left] {$\fst$} (01)
(01) edge node[left] {$F_2$} (00)
(12) edge node[right] {$\fst$} (11)
(11) edge node[right] {$f_1$} (10)
(21) edge[-,double] (20)
(02) edge node[above] {$H$} node[below] {$\simeq$} (12)
(01) edge node[above] {$\fst$} (11)
(11) edge node[above] {$f_2f_1$} (21)
(00) edge node[above] {$\fst$} (10)
(10) edge node[above] {$f_2$} (20)
(12) edge node[above left] {$F_1$} (01);
\end{tikzpicture}
\]
} in the margin for an overview)
\begin{lemma}
\label{lem:fibersofcomposites}
Consider pointed functions $(f_1,p_1):(X_0,x_0)\to_*(X_1,x_1)$ and $(f_2,p_2):(X_1,x_1)\to_*(X_2,x_2)$ and the resulting functions
Expand Down

0 comments on commit 34cfbbe

Please sign in to comment.