Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Literature – Idempotents in Intensional Type Theory #1160

Merged
merged 17 commits into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 18 additions & 12 deletions references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -531,18 +531,24 @@ @online{Shu14UniversalProperties
}

@article{Shu17,
title = {Idempotents in Intensional Type Theory},
author = {Shulman, Michael},
date = {2017-04-27},
year = {2017},
month = {04},
journal = {Logical Methods in Computer Science},
volume = {Volume 12, Issue 3},
publisher = {Episciences.org},
issn = {1860-5974},
doi = {10.2168/LMCS-12(3:9)2016},
url = {https://lmcs.episciences.org/2027},
abstract = {We study idempotents in intensional Martin-L\"of type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodsky's univalence axiom, there exist idempotents that do not split; thus in plain MLTT not all idempotents can be proven to split. On the other hand, assuming only function extensionality, an idempotent can be split if and only if its witness of idempotency satisfies one extra coherence condition. Both proofs are inspired by parallel results of Lurie in higher category theory, showing that ideas from higher category theory and homotopy theory can have applications even in ordinary MLTT. Finally, we show that although the witness of idempotency can be recovered from a splitting, the one extra coherence condition cannot in general; and we construct "the type of fully coherent idempotents", by splitting an idempotent on the type of partially coherent ones. Our results have been formally verified in the proof assistant Coq.}
title = {Idempotents in Intensional Type Theory},
author = {Shulman, Michael},
date = {2017-04-27},
year = {2017},
month = {04},
eprint = {1507.03634},
eprinttype = {arxiv},
eprintclass = {math},
primaryClass = {math.LO},
journal = {Logical Methods in Computer Science},
volume = {12},
issue = {3},
pages = {1--24},
publisher = {Episciences.org},
issn = {1860-5974},
doi = {10.2168/LMCS-12(3:9)2016},
url = {https://lmcs.episciences.org/2027},
abstract = {We study idempotents in intensional Martin-L\"of type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodsky's univalence axiom, there exist idempotents that do not split; thus in plain MLTT not all idempotents can be proven to split. On the other hand, assuming only function extensionality, an idempotent can be split if and only if its witness of idempotency satisfies one extra coherence condition. Both proofs are inspired by parallel results of Lurie in higher category theory, showing that ideas from higher category theory and homotopy theory can have applications even in ordinary MLTT. Finally, we show that although the witness of idempotency can be recovered from a splitting, the one extra coherence condition cannot in general; and we construct "the type of fully coherent idempotents", by splitting an idempotent on the type of partially coherent ones. Our results have been formally verified in the proof assistant Coq.}
}

@article{Shu18,
Expand Down
22 changes: 22 additions & 0 deletions src/foundation-core/functoriality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.retracts-of-types
open import foundation-core.transport-along-identifications
```

Expand Down Expand Up @@ -234,6 +236,26 @@ module _
is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-map-equiv (e x))
```

### The action of `tot` on retracts

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3}
where

retraction-tot :
{f : (x : A) → B x → C x} →
((x : A) → retraction (f x)) → retraction (tot f)
pr1 (retraction-tot {f} r) (x , z) =
( x , map-retraction (f x) (r x) z)
pr2 (retraction-tot {f} r) (x , z) =
eq-pair-eq-fiber (is-retraction-map-retraction (f x) (r x) z)

retract-tot : ((x : A) → (B x) retract-of (C x)) → (Σ A B) retract-of (Σ A C)
pr1 (retract-tot r) = tot (λ x → inclusion-retract (r x))
pr2 (retract-tot r) = retraction-tot (λ x → retraction-retract (r x))
```

### The fibers of `map-Σ-map-base`

```agda
Expand Down
25 changes: 24 additions & 1 deletion src/foundation-core/sets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,9 @@ open import foundation-core.truncation-levels

## Idea

A type is a set if its identity types are propositions.
A type is a {{#concept "set" Agda=is-set}} if its
[identity types](foundation-core.identity-types.md) are
[propositions](foundation-core.propositions.md).

## Definition

Expand Down Expand Up @@ -86,6 +88,27 @@ module _
( contraction (is-proof-irrelevant-is-prop (H x x) refl) p)
```

### A type is a set if and only if it satisfies uniqueness of identity proofs

A type `A` is said to satisfy
{{#concept "uniqueness of identity proofs" Agda=has-uip}} if for all elements
`x y : A` all equality proofs `x = y` are equal.

```agda
has-uip : {l : Level} → UU l → UU l
has-uip A = (x y : A) → all-elements-equal (x = y)

module _
{l : Level} {A : UU l}
where

is-set-has-uip : is-set A → has-uip A
is-set-has-uip is-set-A x y = eq-is-prop' (is-set-A x y)

has-uip-is-set : has-uip A → is-set A
has-uip-is-set uip-A x y = is-prop-all-elements-equal (uip-A x y)
```

### If a reflexive binary relation maps into the identity type of `A`, then `A` is a set

```agda
Expand Down
1 change: 1 addition & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ open import foundation.category-of-families-of-sets public
open import foundation.category-of-sets public
open import foundation.choice-of-representatives-equivalence-relation public
open import foundation.codiagonal-maps-of-types public
open import foundation.coherently-idempotent-maps public
open import foundation.coherently-invertible-maps public
open import foundation.coinhabited-pairs-of-types public
open import foundation.commuting-cubes-of-maps public
Expand Down
76 changes: 76 additions & 0 deletions src/foundation/coherently-idempotent-maps.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Coherently idempotent maps

```agda
module foundation.coherently-idempotent-maps where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.homotopy-algebra
open import foundation.quasicoherently-idempotent-maps
open import foundation.split-idempotent-maps
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.propositions
open import foundation-core.retractions
open import foundation-core.sets
```

</details>

## Idea

A
{{#concept "coherently idempotent map" Disambiguation="of types" Agda=is-coherently-idempotent}}
is an [idempotent](foundation.idempotent-maps.md) map `f : A → A`
[equipped](foundation.structure.md) with an infinitely coherent hierarchy of
[homotopies](foundation-core.homotopies.md) making it a "homotopy-correct"
definition of an idempotent map in Homotopy Type Theory.

The infinite coherence condition is given by taking the
[sequential limit](foundation.sequential-limits.md) of iterated application of
the splitting construction on
[quasicoherently idempotent maps](foundation.quasicoherently-idempotent-maps.md)
given in {{#cite Shu17}}:

```text
is-coherently-idempotent f :≐
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
Σ (a : ℕ → is-quasicoherently-idempotent f), (Π (n : ℕ), split(aₙ₊₁) ~ aₙ)
```

**Terminology.** Our definition of a _coherently idempotent map_ corresponds to
the definition of a _(fully coherent) idempotent map_ in {{#reference Shu17}}
and {{#reference Shu14SplittingIdempotents}}. Our definition of an _idempotent
map_ corresponds in their terminology to a _pre-idempotent map_.

## Definitions

### The structure on a map of coherent idempotence

```agda
is-coherently-idempotent : {l : Level} {A : UU l} → (A → A) → UU l
is-coherently-idempotent f =
Σ ( ℕ → is-quasicoherently-idempotent f)
( λ a →
(n : ℕ) →
htpy-is-quasicoherently-idempotent
( is-quasicoherently-idempotent-is-split-idempotent
( is-split-idempotent-is-quasicoherently-idempotent
( a (succ-ℕ n))))
( a n))
```

## See also

- [Split idempotent maps](foundation.split-idempotent-maps.md)

## References

{{#bibliography}} {{#reference Shu17}} {{#reference Shu14SplittingIdempotents}}
VojtechStep marked this conversation as resolved.
Show resolved Hide resolved
87 changes: 87 additions & 0 deletions src/foundation/quasicoherently-idempotent-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,24 @@ module foundation.quasicoherently-idempotent-maps where
```agda
open import foundation.1-types
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-homotopies
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-algebra
open import foundation.homotopy-induction
open import foundation.idempotent-maps
open import foundation.identity-types
open import foundation.negated-equality
open import foundation.negation
open import foundation.structure-identity-principle
open import foundation.torsorial-type-families
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import foundation.whiskering-higher-homotopies-composition
open import foundation.whiskering-homotopies-composition

open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.propositions
Expand Down Expand Up @@ -416,6 +422,87 @@ idempotence homotopy `f ∘ f ~ f` is quasicoherent. A counterexample can be
constructed using the [cantor space](set-theory.cantor-space.md), see Section 4
of {{#cite Shu17}} for more details.

### Characterization of identity of quasicoherently idempotent maps

A homotopy of quasicoherent idempotence witnesses `(I, Q) ~ (J, R)` consists of
a homotopy of the underlying idempotence witnesses `H : I ~ J` and a
[coherence](foundation-core.commuting-squares-of-homotopies.md)

```text
fH
f ·l I -------- f ·l J
| |
Q | | R
| |
I ·r f -------– J ·r f.
Hf
```

```agda
module _
{l : Level} {A : UU l} {f : A → A}
where

coherence-htpy-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) →
( is-idempotent-is-quasicoherently-idempotent p ~
is-idempotent-is-quasicoherently-idempotent q) → UU l
fredrik-bakke marked this conversation as resolved.
Show resolved Hide resolved
coherence-htpy-is-quasicoherently-idempotent (I , Q) (J , R) H =
coherence-square-homotopies
( left-whisker-comp² f H)
( Q)
( R)
( right-whisker-comp² H f)

htpy-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) → UU l
htpy-is-quasicoherently-idempotent p q =
Σ ( is-idempotent-is-quasicoherently-idempotent p ~
is-idempotent-is-quasicoherently-idempotent q)
( coherence-htpy-is-quasicoherently-idempotent p q)

refl-htpy-is-quasicoherently-idempotent :
(p : is-quasicoherently-idempotent f) →
htpy-is-quasicoherently-idempotent p p
refl-htpy-is-quasicoherently-idempotent p = (refl-htpy , right-unit-htpy)

htpy-eq-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) →
p = q → htpy-is-quasicoherently-idempotent p q
htpy-eq-is-quasicoherently-idempotent p .p refl =
refl-htpy-is-quasicoherently-idempotent p

is-torsorial-htpy-is-quasicoherently-idempotent :
(p : is-quasicoherently-idempotent f) →
is-torsorial (htpy-is-quasicoherently-idempotent p)
is-torsorial-htpy-is-quasicoherently-idempotent p =
is-torsorial-Eq-structure
( is-torsorial-htpy (is-idempotent-is-quasicoherently-idempotent p))
( is-idempotent-is-quasicoherently-idempotent p , refl-htpy)
( is-torsorial-htpy (coh-is-quasicoherently-idempotent p ∙h refl-htpy))

is-equiv-htpy-eq-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) →
is-equiv (htpy-eq-is-quasicoherently-idempotent p q)
is-equiv-htpy-eq-is-quasicoherently-idempotent p =
fundamental-theorem-id
( is-torsorial-htpy-is-quasicoherently-idempotent p)
( htpy-eq-is-quasicoherently-idempotent p)

extensionality-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) →
(p = q) ≃ (htpy-is-quasicoherently-idempotent p q)
extensionality-is-quasicoherently-idempotent p q =
( htpy-eq-is-quasicoherently-idempotent p q ,
is-equiv-htpy-eq-is-quasicoherently-idempotent p q)

eq-htpy-is-quasicoherently-idempotent :
(p q : is-quasicoherently-idempotent f) →
htpy-is-quasicoherently-idempotent p q → p = q
eq-htpy-is-quasicoherently-idempotent p q =
map-inv-is-equiv (is-equiv-htpy-eq-is-quasicoherently-idempotent p q)
```

## See also

- In [`foundation.split-idempotent-maps`](foundation.split-idempotent-maps.md)
Expand Down
8 changes: 4 additions & 4 deletions src/foundation/retracts-of-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,8 +93,8 @@ module _
is-equiv-htpy-eq-retract R =
fundamental-theorem-id (is-torsorial-htpy-retract R) (htpy-eq-retract R)

equiv-htpy-eq-retract : (R S : A retract-of B) → (R = S) ≃ htpy-retract R S
equiv-htpy-eq-retract R S =
extensionality-retract : (R S : A retract-of B) → (R = S) ≃ htpy-retract R S
extensionality-retract R S =
( htpy-eq-retract R S , is-equiv-htpy-eq-retract R S)

eq-htpy-retract : (R S : A retract-of B) → htpy-retract R S → R = S
Expand Down Expand Up @@ -158,8 +158,8 @@ module _
is-equiv-equiv-eq-retracts R =
fundamental-theorem-id (is-torsorial-equiv-retracts R) (equiv-eq-retracts R)

equiv-equiv-eq-retracts : (R S : retracts l2 A) → (R = S) ≃ equiv-retracts R S
equiv-equiv-eq-retracts R S =
extensionality-retracts : (R S : retracts l2 A) → (R = S) ≃ equiv-retracts R S
extensionality-retracts R S =
( equiv-eq-retracts R S , is-equiv-equiv-eq-retracts R S)

eq-equiv-retracts : (R S : retracts l2 A) → equiv-retracts R S → R = S
Expand Down
7 changes: 6 additions & 1 deletion src/literature.lagda.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,18 @@
# Formalization of results from the literature

> This page is a work in early progress. To see what's happening behind the
> scenes, you can have a look at the associated GitHub issue
> [#1055](https://github.com/UniMath/agda-unimath/issues/1055).

## References

{{#bibliography}} {{#reference SvDR20}}
{{#bibliography}} {{#reference SvDR20}} {{#reference Shu17}}

## Files in the namespace

```agda
module literature where

open import literature.idempotents-in-intensional-type-theory public
open import literature.sequential-colimits-in-homotopy-type-theory public
```
Loading
Loading