Skip to content

Roadmap

Yin Cheang Ng edited this page Dec 19, 2024 · 1 revision

FASTSolver High-Performance Optimization Guidelines and Roadmap

1. Current State Analysis

The repository is primarily a numerical solution framework with:

__Core implementations in C++ (C++17 standard)__ __Multiple solver implementations including:__ __Krylov Subspace methods (GMRES, Conjugate Gradient)__ __Direct solvers (LU factorization)__ __Iterative solvers__ __Preconditioners (LU, MultiGrid)__ __Mixed precision capabilities__ __Python bindings using Pybind11__ __2. Optimization Guidelines__

2.1 Code-Level Optimization

a) Memory Management

Stack vs Heap: Use stack allocation for small matrices/vectors (< 1KB) Implement custom memory pools for frequent allocations Consider using memory alignment for SIMD operations b) SIMD Vectorization

C++ // Optimize for modern CPU architectures #include <immintrin.h>

// Example vectorization for vector operations void vectorAdd(double* a, double* b, double* c, size_t n) { // Ensure proper alignment #pragma omp simd align(a,b,c:32) for (size_t i = 0; i < n; i++) { c[i] = a[i] + b[i]; } } c) Cache Optimization

Implement cache-friendly data structures Use data layouts that minimize cache misses Consider matrix blocking techniques for large operations 2.2 Algorithm-Level Optimization

a) Linear Algebra Operations

Implement BLAS Level 3 operations where possible Use blocked algorithms for matrix operations Consider mixed-precision computing for appropriate problems b) Solver Optimization

C++ // Example of optimized Conjugate Gradient implementation template<typename MatrixType, typename VectorType> class OptimizedConjugateGradient : public IterativeSolver { void solve(const MatrixType& A, VectorType& x, const VectorType& b) { // Use blocked operations for matrix-vector products // Implement pipelining for better cache utilization // Consider mixed-precision operations where appropriate } }; 2.3 Parallelization Strategy

a) Thread-Level Parallelism

Use OpenMP for shared-memory parallelization Implement proper load balancing Minimize synchronization points C++ // Example of parallel implementation #pragma omp parallel for schedule(dynamic) for (size_t i = 0; i < n; i++) { // Computational kernels } b) GPU Acceleration

Identify GPU-friendly algorithms Implement CUDA/OpenCL kernels for compute-intensive operations Use hybrid CPU-GPU execution where appropriate

3. Performance Optimization Roadmap

Phase 1: Profiling and Analysis (1-2 months)

Setup performance benchmarking framework

Implement comprehensive benchmarks Define performance metrics Setup CI/CD pipeline for performance testing Profile existing codebase

Identify bottlenecks Analyze memory access patterns Measure cache utilization

Phase 2: Core Optimizations (2-3 months)

Memory optimization

Implement custom allocators Optimize data structures Improve cache utilization Algorithmic improvements

Optimize critical mathematical operations Implement blocked algorithms Add mixed-precision support

Phase 3: Parallelization (2-3 months)

Thread-level parallelization

Implement OpenMP parallelization Optimize load balancing Reduce synchronization overhead GPU acceleration

Implement CUDA kernels for key operations Optimize memory transfers Implement hybrid CPU-GPU execution

Phase 4: Advanced Optimizations (2-3 months)

SIMD optimization

Implement vectorized operations Optimize for different instruction sets Auto-vectorization improvements Specialized optimizations

Problem-specific optimizations Architecture-specific tuning Advanced preconditioners 4. Implementation Best Practices

4.1 Code Organization

C++ // Example of optimized class structure template<typename T> class OptimizedSolver { private: // Cache-aligned data structures alignas(64) std::vector<T> data_;

`// Performance-critical methods`
`void computeIntensive() {`
    `#pragma omp parallel`
    `{`
        `// Parallel implementation`
    `}`
`}`

public: // Public interface with performance documentation void solve(const Problem& p) { // Implementation } };

4.2 Testing and Verification

Implement performance regression tests Create benchmarking suite Maintain accuracy verification tests 5. Performance Monitoring and Maintenance

Setup continuous performance monitoring

Regular benchmarking Performance regression testing Resource utilization tracking Documentation and reporting

Performance characteristics documentation Optimization guidelines for contributors Regular performance reports