-
Notifications
You must be signed in to change notification settings - Fork 45
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add reevaluation function to compute corrected archives in unce…
…rtain domains
- Loading branch information
1 parent
fe5c66a
commit 6fe9efb
Showing
2 changed files
with
559 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
from functools import partial | ||
from typing import Callable, Tuple | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
|
||
from qdax.core.containers.mapelites_repertoire import MapElitesRepertoire | ||
from qdax.types import Descriptor, ExtraScores, Fitness, Genotype, RNGKey | ||
from qdax.utils.sampling import ( | ||
dummy_extra_scores_extractor, | ||
median, | ||
multi_sample_scoring_function, | ||
std, | ||
) | ||
|
||
|
||
@partial( | ||
jax.jit, | ||
static_argnames=( | ||
"scoring_fn", | ||
"num_reevals", | ||
"fitness_extractor", | ||
"descriptor_extractor", | ||
"extra_scores_extractor", | ||
"scan_size", | ||
), | ||
) | ||
def reevaluation_function( | ||
repertoire: MapElitesRepertoire, | ||
random_key: RNGKey, | ||
empty_corrected_repertoire: MapElitesRepertoire, | ||
scoring_fn: Callable[ | ||
[Genotype, RNGKey], | ||
Tuple[Fitness, Descriptor, ExtraScores, RNGKey], | ||
], | ||
num_reevals: int, | ||
fitness_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median, | ||
descriptor_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median, | ||
extra_scores_extractor: Callable[ | ||
[ExtraScores, int], ExtraScores | ||
] = dummy_extra_scores_extractor, | ||
scan_size: int = 0, | ||
) -> Tuple[MapElitesRepertoire, RNGKey]: | ||
""" | ||
Perform reevaluation of a repertoire and construct a corrected repertoire from it. | ||
Args: | ||
repertoire: repertoire to reevaluate. | ||
empty_corrected_repertoire: repertoire to be filled with reevaluated solutions, | ||
allow to use a different type of repertoire than the one from the algorithm. | ||
random_key: JAX random key. | ||
scoring_fn: scoring function used for evaluation. | ||
num_reevals: number of samples to generate for each individual. | ||
fitness_extractor: function to extract the final fitness from | ||
multiple samples of the same solution (default: median). | ||
descriptor_extractor: function to extract the final descriptor from | ||
multiple samples of the same solution (default: median). | ||
extra_scores_extractor: function to extract the extra_scores from | ||
multiple samples of the same solution (default: no effect). | ||
scan_size: allow to split the reevaluations in multiple batch to reduce | ||
the memory load of the reevaluation. | ||
Returns: | ||
The corrected repertoire and a random key. | ||
""" | ||
|
||
# If no reevaluations, return copies of the original container | ||
if num_reevals == 0: | ||
return repertoire, random_key | ||
|
||
# Perform reevaluation | ||
( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
random_key, | ||
) = _perform_reevaluation( | ||
policies_params=repertoire.genotypes, | ||
random_key=random_key, | ||
scoring_fn=scoring_fn, | ||
num_reevals=num_reevals, | ||
scan_size=scan_size, | ||
) | ||
|
||
# Extract the final scores | ||
extra_scores = extra_scores_extractor(all_extra_scores, num_reevals) | ||
fitnesses = fitness_extractor(all_fitnesses) | ||
descriptors = descriptor_extractor(all_descriptors) | ||
|
||
# Set -inf fitness for all unexisting indivs | ||
fitnesses = jnp.where(repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses) | ||
|
||
# Fill-in the corrected repertoire | ||
corrected_repertoire = empty_corrected_repertoire.add( | ||
batch_of_genotypes=repertoire.genotypes, | ||
batch_of_descriptors=descriptors, | ||
batch_of_fitnesses=fitnesses, | ||
batch_of_extra_scores=extra_scores, | ||
) | ||
|
||
return corrected_repertoire, random_key | ||
|
||
|
||
@partial( | ||
jax.jit, | ||
static_argnames=( | ||
"scoring_fn", | ||
"num_reevals", | ||
"fitness_extractor", | ||
"fitness_reproducibility_extractor", | ||
"descriptor_extractor", | ||
"descriptor_reproducibility_extractor", | ||
"extra_scores_extractor", | ||
"scan_size", | ||
), | ||
) | ||
def reevaluation_reproducibility_function( | ||
repertoire: MapElitesRepertoire, | ||
random_key: RNGKey, | ||
empty_corrected_repertoire: MapElitesRepertoire, | ||
scoring_fn: Callable[ | ||
[Genotype, RNGKey], | ||
Tuple[Fitness, Descriptor, ExtraScores, RNGKey], | ||
], | ||
num_reevals: int, | ||
fitness_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median, | ||
fitness_reproducibility_extractor: Callable[[jnp.ndarray], jnp.ndarray] = std, | ||
descriptor_extractor: Callable[[jnp.ndarray], jnp.ndarray] = median, | ||
descriptor_reproducibility_extractor: Callable[[jnp.ndarray], jnp.ndarray] = std, | ||
extra_scores_extractor: Callable[ | ||
[ExtraScores, int], ExtraScores | ||
] = dummy_extra_scores_extractor, | ||
scan_size: int = 0, | ||
) -> Tuple[MapElitesRepertoire, MapElitesRepertoire, MapElitesRepertoire, RNGKey]: | ||
""" | ||
Perform reevaluation of a repertoire and construct a corrected repertoire and a | ||
reproducibility repertoire from it. | ||
Args: | ||
repertoire: repertoire to reevaluate. | ||
empty_corrected_repertoire: repertoire to be filled with reevaluated solutions, | ||
allow to use a different type of repertoire than the one from the algorithm. | ||
random_key: JAX random key. | ||
scoring_fn: scoring function used for evaluation. | ||
num_reevals: number of samples to generate for each individual. | ||
fitness_extractor: function to extract the final fitness from | ||
multiple samples of the same solution (default: median). | ||
fitness_reproducibility_extractor: function to extract the fitness | ||
reproducibility from multiple samples of the same solution (default: std). | ||
descriptor_extractor: function to extract the final descriptor from | ||
multiple samples of the same solution (default: median). | ||
descriptor_reproducibility_extractor: function to extract the descriptor | ||
reproducibility from multiple samples of the same solution (default: std). | ||
extra_scores_extractor: function to extract the extra_scores from | ||
multiple samples of the same solution (default: no effect). | ||
scan_size: allow to split the reevaluations in multiple batch to reduce | ||
the memory load of the reevaluation. | ||
Returns: | ||
The corrected repertoire. | ||
A repertoire storing reproducibility in fitness. | ||
A repertoire storing reproducibility in descriptor. | ||
A random key. | ||
""" | ||
|
||
# If no reevaluations, return copies of the original container | ||
if num_reevals == 0: | ||
return ( | ||
repertoire, | ||
repertoire, | ||
repertoire, | ||
random_key, | ||
) | ||
|
||
# Perform reevaluation | ||
( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
random_key, | ||
) = _perform_reevaluation( | ||
policies_params=repertoire.genotypes, | ||
random_key=random_key, | ||
scoring_fn=scoring_fn, | ||
num_reevals=num_reevals, | ||
scan_size=scan_size, | ||
) | ||
|
||
# Extract the final scores | ||
extra_scores = extra_scores_extractor(all_extra_scores, num_reevals) | ||
fitnesses = fitness_extractor(all_fitnesses) | ||
fitnesses_reproducibility = fitness_reproducibility_extractor(all_fitnesses) | ||
descriptors = descriptor_extractor(all_descriptors) | ||
descriptors_reproducibility = descriptor_reproducibility_extractor(all_descriptors) | ||
|
||
# WARNING: in the case of descriptors_reproducibility, take average over dimensions | ||
descriptors_reproducibility = jnp.average(descriptors_reproducibility, axis=-1) | ||
|
||
# Set -inf fitness for all unexisting indivs | ||
fitnesses = jnp.where(repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses) | ||
fitnesses_reproducibility = jnp.where( | ||
repertoire.fitnesses == -jnp.inf, -jnp.inf, fitnesses_reproducibility | ||
) | ||
descriptors_reproducibility = jnp.where( | ||
repertoire.fitnesses == -jnp.inf, -jnp.inf, descriptors_reproducibility | ||
) | ||
|
||
# Fill-in corrected repertoire | ||
corrected_repertoire = empty_corrected_repertoire.add( | ||
batch_of_genotypes=repertoire.genotypes, | ||
batch_of_descriptors=descriptors, | ||
batch_of_fitnesses=fitnesses, | ||
batch_of_extra_scores=extra_scores, | ||
) | ||
|
||
# Fill-in fit_reproducibility repertoire | ||
fit_reproducibility_repertoire = empty_corrected_repertoire.add( | ||
batch_of_genotypes=repertoire.genotypes, | ||
batch_of_descriptors=repertoire.descriptors, | ||
batch_of_fitnesses=fitnesses_reproducibility, | ||
batch_of_extra_scores=extra_scores, | ||
) | ||
|
||
# Fill-in desc_reproducibility repertoire | ||
desc_reproducibility_repertoire = empty_corrected_repertoire.add( | ||
batch_of_genotypes=repertoire.genotypes, | ||
batch_of_descriptors=repertoire.descriptors, | ||
batch_of_fitnesses=descriptors_reproducibility, | ||
batch_of_extra_scores=extra_scores, | ||
) | ||
|
||
return ( | ||
corrected_repertoire, | ||
fit_reproducibility_repertoire, | ||
desc_reproducibility_repertoire, | ||
random_key, | ||
) | ||
|
||
|
||
@partial( | ||
jax.jit, | ||
static_argnames=( | ||
"scoring_fn", | ||
"num_reevals", | ||
"scan_size", | ||
), | ||
) | ||
def _perform_reevaluation( | ||
policies_params: Genotype, | ||
random_key: RNGKey, | ||
scoring_fn: Callable[ | ||
[Genotype, RNGKey], | ||
Tuple[Fitness, Descriptor, ExtraScores, RNGKey], | ||
], | ||
num_reevals: int, | ||
scan_size: int = 0, | ||
) -> Tuple[Fitness, Descriptor, ExtraScores, RNGKey]: | ||
""" | ||
Sub-function used to perform reevaluation of a repertoire in uncertain applications. | ||
Args: | ||
policies_params: genotypes to reevaluate. | ||
random_key: JAX random key. | ||
scoring_fn: scoring function used for evaluation. | ||
num_reevals: number of samples to generate for each individual. | ||
scan_size: allow to split the reevaluations in multiple batch to reduce | ||
the memory load of the reevaluation. | ||
Returns: | ||
The fitnesses, descriptors and extra score from the reevaluation, | ||
and a randon key. | ||
""" | ||
|
||
# If no need for scan, call the sampling function | ||
if scan_size == 0: | ||
( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
random_key, | ||
) = multi_sample_scoring_function( | ||
policies_params=policies_params, | ||
random_key=random_key, | ||
scoring_fn=scoring_fn, | ||
num_samples=num_reevals, | ||
) | ||
|
||
# If need for scan, call the sampling function multiple times | ||
else: | ||
num_loops = num_reevals // scan_size | ||
|
||
def _sampling_scan( | ||
random_key: RNGKey, | ||
unused: Tuple[()], | ||
) -> Tuple[Tuple[RNGKey], Tuple[Fitness, Descriptor, ExtraScores]]: | ||
( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
random_key, | ||
) = multi_sample_scoring_function( | ||
policies_params=policies_params, | ||
random_key=random_key, | ||
scoring_fn=scoring_fn, | ||
num_samples=scan_size, | ||
) | ||
return (random_key), ( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
) | ||
|
||
(random_key), ( | ||
all_fitnesses, | ||
all_descriptors, | ||
all_extra_scores, | ||
) = jax.lax.scan(_sampling_scan, (random_key), (), length=num_loops) | ||
all_fitnesses = jnp.hstack(all_fitnesses) | ||
all_descriptors = jnp.hstack(all_descriptors) | ||
|
||
return all_fitnesses, all_descriptors, all_extra_scores, random_key |
Oops, something went wrong.