MedIA 2024 [paper], MICCAI 2022 [paper] [presentation] [poster]
TL;DR: A novel uncertainty estimation using anatomically-aware representation to guide the segmentation model in a low-data regime.
Keywords: Semi-Supervised learning; Anatomically-aware Representation; Labeling Representation; Image Segmentation; Uncertainty.
This code depends on the following libraries:
- Pytorch (1.8.0+cu111)
- Python >= 3.8
- tensorboardX
- some basic libraries: numpy, glob, skimage, matplotlib, tqdm...
Training of our approach involves two steps:
- DAE (Denoising Autoencoder) model training with available labels
cd code_DAE
python train_DAE.py --exp DAE_L10 --nb_labels 26 --total_labels 260 --emb_dim 512
- Segmentation model training with DAE under limited labels
cd code_DAE
python train_Abdomen_meanteacher_DAE_certainty.py --exp L10_r1 --nb_labels 26 --total_labels 260 --model_DAE 'DAE_L10/model.pth' --emb_dim 512
Testing segmentation results
python test_Abdomen.py --model 'L10_r1/best_model.pth'
Please cite our paper if you find this code or our work useful for your research.
@article{adiga2023anatomically,
title={Anatomically-aware Uncertainty for Semi-supervised Image Segmentation},
author={Adiga V, Sukesh and Dolz, Jose and Lombaert, Herve},
journal={Medical Image Analysis (MedIA)},
year={2024}
}
@article{adiga2022leveraging,
title={Leveraging Labeling Representations in Uncertainty-based Semi-supervised Segmentation},
author={Adiga V, Sukesh and Dolz, Jose and Lombaert, Herve},
journal={Medical Image Computing and Computer Assisted Intervention (MICCAI)},
year={2022}
}
- Uncertainty-aware Self-ensembling Model for Semi-supervised (UAMT) [paper][code]
- Semi-supervised Learning for Medical Image Segmentation (SSL4MIS) [paper][code]
For more information, please get in touch with Sukesh Adiga ([email protected]).
This project is licensed under the terms of the MIT license.