-
Notifications
You must be signed in to change notification settings - Fork 4.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[YAML] Add JSON parsing to PubSub IO. #28754
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one or more | ||
# contributor license agreements. See the NOTICE file distributed with | ||
# this work for additional information regarding copyright ownership. | ||
# The ASF licenses this file to You under the Apache License, Version 2.0 | ||
# (the "License"); you may not use this file except in compliance with | ||
# the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
"""Utilities for converting between JSON and Beam Schema'd data. | ||
|
||
For internal use, no backward compatibility guarantees. | ||
""" | ||
|
||
import json | ||
from typing import Any | ||
from typing import Callable | ||
from typing import Dict | ||
|
||
import apache_beam as beam | ||
from apache_beam.portability.api import schema_pb2 | ||
from apache_beam.typehints import schemas | ||
|
||
JSON_ATOMIC_TYPES_TO_BEAM = { | ||
'boolean': schema_pb2.BOOLEAN, | ||
'integer': schema_pb2.INT64, | ||
'number': schema_pb2.DOUBLE, | ||
'string': schema_pb2.STRING, | ||
} | ||
|
||
|
||
def json_schema_to_beam_schema( | ||
json_schema: Dict[str, Any]) -> schema_pb2.Schema: | ||
"""Returns a Beam schema equivalent for the given Json schema.""" | ||
def maybe_nullable(beam_type, nullable): | ||
if nullable: | ||
beam_type.nullable = True | ||
return beam_type | ||
|
||
json_type = json_schema.get('type', None) | ||
if json_type != 'object': | ||
raise ValueError('Expected object type, got {json_type}.') | ||
if 'properties' not in json_schema: | ||
# Technically this is a valid (vacuous) schema, but as it's not generally | ||
# meaningful, throw an informative error instead. | ||
# (We could add a flag to allow this degenerate case.) | ||
raise ValueError('Missing properties for {json_schema}.') | ||
required = set(json_schema.get('required', [])) | ||
return schema_pb2.Schema( | ||
fields=[ | ||
schemas.schema_field( | ||
name, | ||
maybe_nullable(json_type_to_beam_type(t), name not in required)) | ||
for (name, t) in json_schema['properties'].items() | ||
]) | ||
|
||
|
||
def json_type_to_beam_type(json_type: Dict[str, Any]) -> schema_pb2.FieldType: | ||
"""Returns a Beam schema type for the given Json (schema) type.""" | ||
if not isinstance(json_type, dict) or 'type' not in json_type: | ||
raise ValueError(f'Malformed type {json_type}.') | ||
type_name = json_type['type'] | ||
if type_name in JSON_ATOMIC_TYPES_TO_BEAM: | ||
return schema_pb2.FieldType( | ||
atomic_type=JSON_ATOMIC_TYPES_TO_BEAM[type_name]) | ||
elif type_name == 'array': | ||
return schema_pb2.FieldType( | ||
array_type=schema_pb2.ArrayType( | ||
element_type=json_type_to_beam_type(json_type['items']))) | ||
elif type_name == 'object': | ||
if 'properties' in json_type: | ||
return schema_pb2.FieldType( | ||
row_type=schema_pb2.RowType( | ||
schema=json_schema_to_beam_schema(json_type))) | ||
elif 'additionalProperties' in json_type: | ||
return schema_pb2.FieldType( | ||
map_type=schema_pb2.MapType( | ||
key_type=schema_pb2.FieldType(atomic_type=schema_pb2.STRING), | ||
value_type=json_type_to_beam_type( | ||
json_type['additionalProperties']))) | ||
else: | ||
raise ValueError( | ||
f'Object type must have either properties or additionalProperties, ' | ||
f'got {json_type}.') | ||
else: | ||
raise ValueError(f'Unable to convert {json_type} to a Beam schema.') | ||
|
||
|
||
def json_to_row(beam_type: schema_pb2.FieldType) -> Callable[[Any], Any]: | ||
"""Returns a callable converting Json objects to Beam rows of the given type. | ||
|
||
The input to the returned callable is expected to conform to the Json schema | ||
corresponding to this Beam type. | ||
""" | ||
type_info = beam_type.WhichOneof("type_info") | ||
if type_info == "atomic_type": | ||
return lambda value: value | ||
elif type_info == "array_type": | ||
element_converter = json_to_row(beam_type.array_type.element_type) | ||
return lambda value: [element_converter(e) for e in value] | ||
elif type_info == "iterable_type": | ||
element_converter = json_to_row(beam_type.iterable_type.element_type) | ||
return lambda value: [element_converter(e) for e in value] | ||
elif type_info == "map_type": | ||
if beam_type.map_type.key_type.atomic_type != schema_pb2.STRING: | ||
raise TypeError( | ||
f'Only strings allowd as map keys when converting from JSON, ' | ||
f'found {beam_type}') | ||
value_converter = json_to_row(beam_type.map_type.value_type) | ||
return lambda value: {k: value_converter(v) for (k, v) in value.items()} | ||
elif type_info == "row_type": | ||
converters = { | ||
field.name: json_to_row(field.type) | ||
for field in beam_type.row_type.schema.fields | ||
} | ||
return lambda value: beam.Row( | ||
** | ||
{name: convert(value[name]) | ||
for (name, convert) in converters.items()}) | ||
elif type_info == "logical_type": | ||
return lambda value: value | ||
else: | ||
raise ValueError(f"Unrecognized type_info: {type_info!r}") | ||
|
||
|
||
def json_parser(beam_schema: schema_pb2.Schema) -> Callable[[bytes], beam.Row]: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. looks like only json_parser and json_formatter are used by other modules. I think it would be better to document these clearly. Docstrings will be good at least for these two functions. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Added basic docstrings to all of these methods. Hopefully the name and signatures should make them clear as well. |
||
"""Returns a callable converting Json strings to Beam rows of the given type. | ||
|
||
The input to the returned callable is expected to conform to the Json schema | ||
corresponding to this Beam type. | ||
""" | ||
to_row = json_to_row( | ||
schema_pb2.FieldType(row_type=schema_pb2.RowType(schema=beam_schema))) | ||
return lambda s: to_row(json.loads(s)) | ||
|
||
|
||
def row_to_json(beam_type: schema_pb2.FieldType) -> Callable[[Any], Any]: | ||
"""Returns a callable converting rows of the given type to Json objects.""" | ||
type_info = beam_type.WhichOneof("type_info") | ||
if type_info == "atomic_type": | ||
return lambda value: value | ||
elif type_info == "array_type": | ||
element_converter = row_to_json(beam_type.array_type.element_type) | ||
return lambda value: [element_converter(e) for e in value] | ||
elif type_info == "iterable_type": | ||
element_converter = row_to_json(beam_type.iterable_type.element_type) | ||
return lambda value: [element_converter(e) for e in value] | ||
elif type_info == "map_type": | ||
if beam_type.map_type.key_type.atomic_type != schema_pb2.STRING: | ||
raise TypeError( | ||
f'Only strings allowd as map keys when converting to JSON, ' | ||
f'found {beam_type}') | ||
value_converter = row_to_json(beam_type.map_type.value_type) | ||
return lambda value: {k: value_converter(v) for (k, v) in value.items()} | ||
elif type_info == "row_type": | ||
converters = { | ||
field.name: row_to_json(field.type) | ||
for field in beam_type.row_type.schema.fields | ||
} | ||
return lambda row: { | ||
name: convert(getattr(row, name)) | ||
for (name, convert) in converters.items() | ||
} | ||
elif type_info == "logical_type": | ||
return lambda value: value | ||
else: | ||
raise ValueError(f"Unrecognized type_info: {type_info!r}") | ||
|
||
|
||
def json_formater( | ||
beam_schema: schema_pb2.Schema) -> Callable[[beam.Row], bytes]: | ||
"""Returns a callable converting rows of the given schema to Json strings.""" | ||
convert = row_to_json( | ||
schema_pb2.FieldType(row_type=schema_pb2.RowType(schema=beam_schema))) | ||
return lambda row: json.dumps(convert(row), sort_keys=True).encode('utf-8') |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do we expect these functions will be used internally? If so, can we document this as the internal utilities and no backward compatibility guaranteed.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
These may be fine to expose, but added a disclaimer just in case.