Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[YAML] Add JSON parsing to PubSub IO. #28754

Merged
merged 4 commits into from
Oct 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions sdks/python/apache_beam/transforms/ptransform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1101,6 +1101,22 @@ def __ror__(self, pvalueish, _unused=None):
def expand(self, pvalue):
raise RuntimeError("Should never be expanded directly.")

def __getattr__(self, attr):
transform_attr = getattr(self.transform, attr)
if callable(transform_attr):

@wraps(transform_attr)
def wrapper(*args, **kwargs):
result = transform_attr(*args, **kwargs)
if isinstance(result, PTransform):
return _NamedPTransform(result, self.label)
else:
return result

return wrapper
else:
return transform_attr


# Defined here to avoid circular import issues for Beam library transforms.
def annotate_yaml(constructor):
Expand Down
183 changes: 183 additions & 0 deletions sdks/python/apache_beam/yaml/json_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""Utilities for converting between JSON and Beam Schema'd data.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we expect these functions will be used internally? If so, can we document this as the internal utilities and no backward compatibility guaranteed.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These may be fine to expose, but added a disclaimer just in case.


For internal use, no backward compatibility guarantees.
"""

import json
from typing import Any
from typing import Callable
from typing import Dict

import apache_beam as beam
from apache_beam.portability.api import schema_pb2
from apache_beam.typehints import schemas

JSON_ATOMIC_TYPES_TO_BEAM = {
'boolean': schema_pb2.BOOLEAN,
'integer': schema_pb2.INT64,
'number': schema_pb2.DOUBLE,
'string': schema_pb2.STRING,
}


def json_schema_to_beam_schema(
json_schema: Dict[str, Any]) -> schema_pb2.Schema:
"""Returns a Beam schema equivalent for the given Json schema."""
def maybe_nullable(beam_type, nullable):
if nullable:
beam_type.nullable = True
return beam_type

json_type = json_schema.get('type', None)
if json_type != 'object':
raise ValueError('Expected object type, got {json_type}.')
if 'properties' not in json_schema:
# Technically this is a valid (vacuous) schema, but as it's not generally
# meaningful, throw an informative error instead.
# (We could add a flag to allow this degenerate case.)
raise ValueError('Missing properties for {json_schema}.')
required = set(json_schema.get('required', []))
return schema_pb2.Schema(
fields=[
schemas.schema_field(
name,
maybe_nullable(json_type_to_beam_type(t), name not in required))
for (name, t) in json_schema['properties'].items()
])


def json_type_to_beam_type(json_type: Dict[str, Any]) -> schema_pb2.FieldType:
"""Returns a Beam schema type for the given Json (schema) type."""
if not isinstance(json_type, dict) or 'type' not in json_type:
raise ValueError(f'Malformed type {json_type}.')
type_name = json_type['type']
if type_name in JSON_ATOMIC_TYPES_TO_BEAM:
return schema_pb2.FieldType(
atomic_type=JSON_ATOMIC_TYPES_TO_BEAM[type_name])
elif type_name == 'array':
return schema_pb2.FieldType(
array_type=schema_pb2.ArrayType(
element_type=json_type_to_beam_type(json_type['items'])))
elif type_name == 'object':
if 'properties' in json_type:
return schema_pb2.FieldType(
row_type=schema_pb2.RowType(
schema=json_schema_to_beam_schema(json_type)))
elif 'additionalProperties' in json_type:
return schema_pb2.FieldType(
map_type=schema_pb2.MapType(
key_type=schema_pb2.FieldType(atomic_type=schema_pb2.STRING),
value_type=json_type_to_beam_type(
json_type['additionalProperties'])))
else:
raise ValueError(
f'Object type must have either properties or additionalProperties, '
f'got {json_type}.')
else:
raise ValueError(f'Unable to convert {json_type} to a Beam schema.')


def json_to_row(beam_type: schema_pb2.FieldType) -> Callable[[Any], Any]:
"""Returns a callable converting Json objects to Beam rows of the given type.

The input to the returned callable is expected to conform to the Json schema
corresponding to this Beam type.
"""
type_info = beam_type.WhichOneof("type_info")
if type_info == "atomic_type":
return lambda value: value
elif type_info == "array_type":
element_converter = json_to_row(beam_type.array_type.element_type)
return lambda value: [element_converter(e) for e in value]
elif type_info == "iterable_type":
element_converter = json_to_row(beam_type.iterable_type.element_type)
return lambda value: [element_converter(e) for e in value]
elif type_info == "map_type":
if beam_type.map_type.key_type.atomic_type != schema_pb2.STRING:
raise TypeError(
f'Only strings allowd as map keys when converting from JSON, '
f'found {beam_type}')
value_converter = json_to_row(beam_type.map_type.value_type)
return lambda value: {k: value_converter(v) for (k, v) in value.items()}
elif type_info == "row_type":
converters = {
field.name: json_to_row(field.type)
for field in beam_type.row_type.schema.fields
}
return lambda value: beam.Row(
**
{name: convert(value[name])
for (name, convert) in converters.items()})
elif type_info == "logical_type":
return lambda value: value
else:
raise ValueError(f"Unrecognized type_info: {type_info!r}")


def json_parser(beam_schema: schema_pb2.Schema) -> Callable[[bytes], beam.Row]:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks like only json_parser and json_formatter are used by other modules. I think it would be better to document these clearly. Docstrings will be good at least for these two functions.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added basic docstrings to all of these methods. Hopefully the name and signatures should make them clear as well.

"""Returns a callable converting Json strings to Beam rows of the given type.

The input to the returned callable is expected to conform to the Json schema
corresponding to this Beam type.
"""
to_row = json_to_row(
schema_pb2.FieldType(row_type=schema_pb2.RowType(schema=beam_schema)))
return lambda s: to_row(json.loads(s))


def row_to_json(beam_type: schema_pb2.FieldType) -> Callable[[Any], Any]:
"""Returns a callable converting rows of the given type to Json objects."""
type_info = beam_type.WhichOneof("type_info")
if type_info == "atomic_type":
return lambda value: value
elif type_info == "array_type":
element_converter = row_to_json(beam_type.array_type.element_type)
return lambda value: [element_converter(e) for e in value]
elif type_info == "iterable_type":
element_converter = row_to_json(beam_type.iterable_type.element_type)
return lambda value: [element_converter(e) for e in value]
elif type_info == "map_type":
if beam_type.map_type.key_type.atomic_type != schema_pb2.STRING:
raise TypeError(
f'Only strings allowd as map keys when converting to JSON, '
f'found {beam_type}')
value_converter = row_to_json(beam_type.map_type.value_type)
return lambda value: {k: value_converter(v) for (k, v) in value.items()}
elif type_info == "row_type":
converters = {
field.name: row_to_json(field.type)
for field in beam_type.row_type.schema.fields
}
return lambda row: {
name: convert(getattr(row, name))
for (name, convert) in converters.items()
}
elif type_info == "logical_type":
return lambda value: value
else:
raise ValueError(f"Unrecognized type_info: {type_info!r}")


def json_formater(
beam_schema: schema_pb2.Schema) -> Callable[[beam.Row], bytes]:
"""Returns a callable converting rows of the given schema to Json strings."""
convert = row_to_json(
schema_pb2.FieldType(row_type=schema_pb2.RowType(schema=beam_schema)))
return lambda row: json.dumps(convert(row), sort_keys=True).encode('utf-8')
16 changes: 14 additions & 2 deletions sdks/python/apache_beam/yaml/yaml_io.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,12 @@

import os
from typing import Any
from typing import Callable
from typing import Iterable
from typing import List
from typing import Mapping
from typing import Optional
from typing import Tuple

import yaml

Expand All @@ -39,6 +41,7 @@
from apache_beam.io.gcp.bigquery import BigQueryDisposition
from apache_beam.portability.api import schema_pb2
from apache_beam.typehints import schemas
from apache_beam.yaml import json_utils
from apache_beam.yaml import yaml_mapping
from apache_beam.yaml import yaml_provider

Expand Down Expand Up @@ -131,25 +134,34 @@ def raise_exception(failed_row_with_error):
return WriteToBigQueryHandlingErrors()


def _create_parser(format, schema):
def _create_parser(
format,
schema: Any) -> Tuple[schema_pb2.Schema, Callable[[bytes], beam.Row]]:
if format == 'raw':
if schema:
raise ValueError('raw format does not take a schema')
return (
schema_pb2.Schema(fields=[schemas.schema_field('payload', bytes)]),
lambda payload: beam.Row(payload=payload))
elif format == 'json':
beam_schema = json_utils.json_schema_to_beam_schema(schema)
return beam_schema, json_utils.json_parser(beam_schema)
else:
raise ValueError(f'Unknown format: {format}')


def _create_formatter(format, schema, beam_schema):
def _create_formatter(
format, schema: Any,
beam_schema: schema_pb2.Schema) -> Callable[[beam.Row], bytes]:
if format == 'raw':
if schema:
raise ValueError('raw format does not take a schema')
field_names = [field.name for field in beam_schema.fields]
if len(field_names) != 1:
raise ValueError(f'Expecting exactly one field, found {field_names}')
return lambda row: getattr(row, field_names[0])
elif format == 'json':
return json_utils.json_formater(beam_schema)
else:
raise ValueError(f'Unknown format: {format}')

Expand Down
Loading
Loading