-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
144 lines (99 loc) · 3.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 13 17:34:31 2021
@author: athirupathiraja
"""
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
data = pd.read_csv('/Users/athirupathiraja/Downloads/train.csv')
data = np.array(data)
m, n = data.shape
np.random.shuffle(data)
dataTest = data[0:1000].T
YTest = dataTest[0]
XTest = dataTest[1:n]
dataTrain = data[1000:m].T
YTrain = dataTrain[0]
XTrain = dataTrain[1:n]
XTrain = XTrain / 255
def initParams():
W1 = np.random.rand(10, 784) - 0.5
b1 = np.random.rand(10, 1) - 0.5
W2 = np.random.rand(10, 10) - 0.5
b2 = np.random.rand(10, 1) - 0.5
return W1, b1, W2, b2
def ReLU(Z):
return np.maximum(0, Z)
def tanH(Z):
return (np.exp(Z) - np.exp(-Z)) / (np.exp(Z) + np.exp(-Z))
def sigmoid(Z):
return 1 / (1 + np.exp(-Z))
def softmax(Z):
return np.exp(Z) / sum(np.exp(Z))
def forwardProp(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = ReLU(Z1)
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
def oneHot(Y):
oneHotY = np.zeros((Y.size, Y.max() + 1))
oneHotY[np.arange(Y.size), Y] = 1
oneHotY = oneHotY.T
return oneHotY
def derivativeReLU(Z):
return Z > 0
def derivativeTanH(Z):
return 1 - tanH(Z) * tanH(Z)
def derivativeSigmoid(Z):
return sigmoid(Z) * (1 - sigmoid(Z))
def backwardProp(Z1, A1, Z2, A2, W2, X, Y):
m = Y.size
oneHotY = oneHot(Y)
dZ2 = A2 - oneHotY
dW2 = 1 / m * dZ2.dot(A1.T)
db2 = 1 / m * np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * derivativeReLU(Z1)
dW1 = 1 / m * dZ1.dot(X.T)
db1 = 1 / m * np.sum(dZ1)
return dW2, db2, dW1, db1
def updateParams(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
def getPredictions(A2):
return np.argmax(A2, 0)
def getAccuracy(predictions, Y):
print(predictions, Y)
return np.sum(predictions == Y) / Y.size
def gradientDescent(X, Y, iterations, alpha):
W1, b1, W2, b2 = initParams()
for i in range(iterations):
Z1, A1, Z2, A2 = forwardProp(W1, b1, W2, b2, X)
dW2, db2, dW1, db1 = backwardProp(Z1, A1, Z2, A2, W2, X, Y)
W1, b1, W2, b2 = updateParams(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if (i % 10 == 0):
print("Iterations: ", i)
predictions = getPredictions(A2)
print("Accuracy: ", getAccuracy(predictions, Y))
return W1, b1, W2, b2
W1, b1, W2, b2 = gradientDescent(XTrain, YTrain, 1000, 0.2)
def makePredictions(X, W1, b1, W2, b2):
_, _, _, A2 = forwardProp(W1, b1, W2, b2, X)
predictions = getPredictions(A2)
return predictions
def testPrediction(index, W1, b1, W2, b2):
current_image = XTrain[:, index, None]
prediction = makePredictions(XTrain[:, index, None], W1, b1, W2, b2)
label = YTrain[index]
print("Prediction: ", prediction)
print("Label: ", label)
current_image = current_image.reshape((28, 28)) * 255
plt.gray()
plt.imshow(current_image, interpolation='nearest')
plt.show()
testPrediction(37, W1, b1, W2, b2)