(Image from https://github.com/megvii-research/NAFNet/blob/main/demo/denoise_img.png)
Ailia input shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Ailia output shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Automatically downloads the onnx and prototxt files when running. It is necessary to be connected to the Internet while downloading.
For the sample image with twice the resolution,
$ python3 nafnet.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 nafnet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --arch
option, you can specify architecture type which is selected from 'Baseline-SIDD-width32', 'NAFNet-SIDD-width64', 'Baseline-SIDD-width64' ,'NAFNet-SIDD-width32' ,(default is NAFNet-SIDD-width32)
$ python3 nafnet.py --arch NAFNet-SIDD-width32
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 nafnet.py --video VIDEO_PATH
(Image from https://github.com/megvii-research/NAFNet/blob/main/demo/denoise_img.png)
Ailia input shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Ailia output shape : (1, 3, IMAGE_HEIGHT, IMAGE_WIDTH)
Automatically downloads the onnx and prototxt files when running. It is necessary to be connected to the Internet while downloading.
For the sample image with twice the resolution,
$ python3 nafnet.py --arch NAFNet-REDS-width64
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 nafnet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH --arch NAFNet-REDS-width64
By adding the --arch
option, you can specify architecture type which is selected from 'Baseline-GoPro-width32' ,'NAFNet-GoPro-width32', 'NAFNet-REDS-width64', 'Baseline-GoPro-width64','NAFNet-GoPro-width64'
$ python3 nafnet.py --arch NAFNet-REDS-width64
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 nafnet.py --video VIDEO_PATH --arch NAFNet-REDS-width64
Pytorch
ONNX opset=11
Baseline-GoPro-width32.onnx.prototxt
Baseline-GoPro-width64.onnx.prototxt
Baseline-SIDD-width32.onnx.prototxt
Baseline-SIDD-width64.onnx.prototxt
NAFNet-GoPro-width32.onnx.prototxt
NAFNet-GoPro-width64.onnx.prototxt
NAFNet-REDS-width64.onnx.prototxt