Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Diehl and Cook (2015) small model #1548

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
295 changes: 295 additions & 0 deletions examples/frompapers/Diehl_Cook_2015.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
"""
Unsupervised learning using STDP
--------------------------------
Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Frontiers in
computational neuroscience, 9, 99.

This script replicates the small 2x400-model. It has no command line
parameters. Instead, you control it by changing the constants below
the imports. Run the script with MODE set to "train" which
(eventually) creates the files theta.npy and weights.npy in the
DATA_PATH directory. Rerun it with MODE set to "observe" to create the
assign.npy file in the same directory. Finally, run "test" to create a
confusion matrix in confusion.npy. The script also creates a few
auxilliary .npy files useful for analysis. The script requires the
progressbar2 library.

MNIST_PATH should point to the directory storing the unzipped *-byte
MNIST files. For reasonable accuracy, N_TRAIN should be 50,000+ and
N_OBSERVE 1,000+.

Written in 2024 by Björn A. Lindqvist <[email protected]>
"""
from brian2 import *
from collections import defaultdict
from pathlib import Path
from progressbar import progressbar
from random import randrange, seed as rseed
from struct import unpack
import numpy as np

# Switch between "train", "observe", and "test" to tune parameters,
# observe excitatory spiking, and test accuracy, respectively.
MODE = 'test'

# Number of training, observation, and testing samples
N_TRAIN = 200_000
N_OBSERVE = 2_000
N_TEST = 1_000

# Random seed value
SEED = 42

# Storage paths
MNIST_PATH = Path('../mnist')
DATA_PATH = Path('data')

# Number of weight save points
N_SAVE_POINTS = 100

# Don't change these values unless you know what you're doing.
N_INP = 784
N_NEURONS = 400
V_EXC_REST = -65 * mV
V_INH_REST = -60 * mV
INTENSITY = 2

# Weights of exc->inh and inh->exc synapses
W_EXC_INH = 10.4
W_INH_EXC = 17.0

def save_npy(arr, path):
arr = np.array(arr)
print('%-9s %-15s => %-30s' % ('Saving', arr.shape, path))
np.save(path, arr)

def load_npy(path):
arr = np.load(path)
print('%-9s %-30s => %-15s' % ('Loading', path, arr.shape))
return arr

def read_mnist(training):
tag = 'train' if training else 't10k'
images = open(MNIST_PATH / ('%s-images-idx3-ubyte' % tag), 'rb')
images.read(4)
n_images = unpack('>I', images.read(4))[0]
n_rows = unpack('>I', images.read(4))[0]
n_cols = unpack('>I', images.read(4))[0]

labels = open(MNIST_PATH / ('%s-labels-idx1-ubyte' % tag), 'rb')
labels.read(4)
n_labels = unpack('>I', labels.read(4))[0]
x = np.frombuffer(images.read(), dtype = np.uint8)
x = x.reshape(n_images, -1) / 8.0
y = np.frombuffer(labels.read(), dtype = np.uint8)
return x, y

def build_network(training):
eqs = '''
dv/dt = (v_rest - v + i_exc + i_inh) / tau_mem : volt (unless refractory)
i_exc = ge * -v : volt
i_inh = gi * (v_inh_base - v) : volt
dge/dt = -ge/(1 * ms) : 1
dgi/dt = -gi/(2 * ms) : 1
dtimer/dt = 0.1 : second
'''
reset = 'v = %r; timer = 0 * ms' % V_EXC_REST
if training:
exc_eqs = eqs + '''
dtheta/dt = -theta / (1e7 * ms) : volt
'''
arr_theta = np.ones(N_NEURONS) * 20 * mV
reset += '; theta += 0.05 * mV'
else:
exc_eqs = eqs + '''
theta : volt
'''
arr_theta = load_npy(DATA_PATH / 'theta.npy') * volt
exc_eqs = Equations(exc_eqs,
tau_mem = 100 * ms,
v_rest = V_EXC_REST,
v_inh_base = -100 * mV)
ng_exc = NeuronGroup(
N_NEURONS, exc_eqs,
threshold = 'v > (theta - 72 * mV) and (timer > 5 * ms)',
refractory = 5 * ms,
reset = reset,
method = 'euler',
name = 'exc')
ng_exc.v = V_EXC_REST - 40 * mV
ng_exc.theta = arr_theta

inh_eqs = Equations(eqs,
tau_mem = 10 * ms,
v_rest = V_INH_REST,
v_inh_base = -85 * mV)
ng_inh = NeuronGroup(N_NEURONS, inh_eqs,
threshold = 'v > -40 * mV',
refractory = 2 * ms,
reset = 'v = -45 * mV',
method = 'euler',
name = 'inh')
ng_inh.v = V_INH_REST - 40 * mV

syns_exc_inh = Synapses(ng_exc, ng_inh,
model = 'w : 1',
on_pre = 'ge_post += w')
syns_exc_inh.connect(j = 'i')
syns_exc_inh.w = W_EXC_INH

syns_inh_exc = Synapses(ng_inh, ng_exc,
model = 'w : 1',
on_pre = 'gi_post += w')
syns_inh_exc.connect(True)

weights = (-np.identity(N_NEURONS) + 1) * W_INH_EXC
syns_inh_exc.w = weights.reshape(-1)

pg_inp = PoissonGroup(N_INP, 0 * Hz, name = 'inp')

# During training, inp->exc synapse weights are plastic.
model = 'w : 1'
on_post = ''
on_pre = 'ge_post += w'
if training:
on_pre += '; pre = 1.; w = clip(w - 0.0001 * post1, 0, 1.0)'
on_post += 'post2bef = post2; w = clip(w + 0.01 * pre * post2bef, 0, 1.0); post1 = 1.; post2 = 1.'
model += '''
post2bef : 1
dpre/dt = -pre/(20 * ms) : 1 (event-driven)
dpost1/dt = -post1/(20 * ms) : 1 (event-driven)
dpost2/dt = -post2/(40 * ms) : 1 (event-driven)
'''
weights = (np.random.random(N_INP * N_NEURONS) + 0.01) * 0.3
else:
weights = load_npy(DATA_PATH / 'weights.npy')

syns_inp_exc = Synapses(
pg_inp, ng_exc,
model = model,
on_pre = on_pre,
on_post = on_post,
name = 'inp_exc'
)
syns_inp_exc.connect(True)
syns_inp_exc.delay = 'rand() * 10 * ms'
syns_inp_exc.w = weights

exc_mon = SpikeMonitor(ng_exc, name = 'sp_exc')
net = Network([pg_inp, ng_exc, ng_inh,
syns_inp_exc, syns_exc_inh, syns_inh_exc,
exc_mon])
# Initialize
net.run(0 * ms)
return net

def show_sample(net, sample, intensity):
exc_mon = net['sp_exc']
prev = exc_mon.count[:]
net['inp'].rates = sample * intensity * Hz
net.run(350 * ms)
# Don't count spikes occuring during the 150 ms rest.
next = exc_mon.count[:]
net['inp'].rates = 0 * Hz
net.run(150 * ms)
pat = next - prev
cnt = np.sum(pat)
if cnt < 5:
return show_sample(net, sample, intensity + 1)
return pat

def predict(groups, rates):
return np.argmax([rates[grp].mean() for grp in groups])

def test():
conf = np.zeros((10, 10))
assign = np.load(DATA_PATH / 'assign.npy')
groups = [np.where(assign == i)[0] for i in range(10)]

X, Y = read_mnist(False)
net = build_network(False)
for i in progressbar(range(N_TEST)):
ix = randrange(len(X))
exc = show_sample(net, X[ix], INTENSITY)
guess = predict(groups, exc)
real = Y[ix]
conf[real, guess] += 1

print('Accuracy: %6.3f' % (np.trace(conf) / np.sum(conf)))
conf = conf/conf.sum(axis=1)[:,None]
print(np.around(conf, 2))
save_npy(conf, DATA_PATH / 'confusion.npy')

def normalize_plastic_weights(syns):
conns = np.reshape(syns.w, (N_INP, N_NEURONS))
col_sums = np.sum(conns, axis = 0)
factors = 78./ col_sums
conns *= factors
syns.w = conns.reshape(-1)

def stats(net):
tick = int(defaultclock.t / defaultclock.dt)
cnt = np.sum(net['sp_exc'].count[:])

inp_exc = net['inp_exc']
w_mu = np.mean(inp_exc.w)
w_std = np.std(inp_exc.w)

exc = net['exc']
theta = exc.theta / mV
theta_mu = np.mean(theta)
theta_sig = np.std(theta)
return [tick, cnt, w_mu, w_std, theta_mu, theta_sig]

def train():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(True)
rows = [stats(net) + [-1]]
w_hist = [np.array(net['inp_exc'].w)]

ratio = max(N_TRAIN // N_SAVE_POINTS, 1)
for i in progressbar(range(N_TRAIN)):
ix = i % n_samples
normalize_plastic_weights(net['inp_exc'])
show_sample(net, X[ix], INTENSITY)
rows.append(stats(net) + [Y[ix]])
if i % ratio == 0:
w_hist.append(np.array(net['inp_exc'].w))

save_npy(rows, DATA_PATH / 'train_stats.npy')
save_npy(w_hist, DATA_PATH / 'train_w_hist.npy')
save_npy(net['inp_exc'].w, DATA_PATH / 'weights.npy')
save_npy(net['exc'].theta, DATA_PATH / 'theta.npy')

def observe():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(False)
rows = [stats(net) + [-1]]
responses = defaultdict(list)

for i in progressbar(range(N_OBSERVE)):
ix = i % n_samples
sample = X[ix]
cls = Y[ix]
exc = show_sample(net, sample, INTENSITY)
rows.append(stats(net) + [Y[ix]])
responses[cls].append(exc)

res = np.zeros((10, N_NEURONS))
for cls, vals in responses.items():
res[cls] = np.array(vals).mean(axis = 0)

assign = np.argmax(res, axis = 0)
save_npy(assign, DATA_PATH / 'assign.npy')
save_npy(rows, DATA_PATH / 'observe_stats.npy')

if __name__ == '__main__':
seed(SEED)
rseed(SEED)
np.random.seed(SEED)
DATA_PATH.mkdir(parents = True, exist_ok = True)
cmds = dict(train = train, observe = observe, test = test)
cmds[MODE]()