This repository puts together all the necessary pieces to generate Limago.
Make sure you are using Vivado 2018.3 IP Build 2404404
. It seems to be a bug in Vivado 2018.3.1 IP Build 2486929 that produces combinational loops in the synthesized HLS.
Before generating any project check each submodule's README.md to verify that everything is set properly
So far VCU118, Alveo U200 and Alveo U280 are supported.
- Please check README.md of the CMAC wrapper to verify clock frequency for VCU118.
- The clock Frequency of the Alveo U200 can be configured using two pins, and the project already supports it.
NOTE: Please double check that pin D32 is driven to
0
before programming Alveo U280 AR# 72926
In order to clone this repository you need git lfs
installed.
This repository uses submodules and git lfs
, check Installing Git Large File Storage to install it.
git clone [email protected]:hpcn-uam/Limago.git --recursive
Click to show
The process is fully automated.
-
The first part consist on generating the necessary IP-Cores
make ips
-
Generate Vivado Project.
a. Check available projects
make help
b. Create Project
make create_prj_vcu118-fns-single-toe-iperf
Once the project is create you can open it. The projects are created under the folder
projects/<project_name>
For instance, you can open the project with Vivado:
vivado projects/vcu118-fns-single-toe-iperf/vcu118-fns-single-toe-iperf.xpr
-
Implement a project
You can either launch it manually from the GUI or using the following command:
make implement_prj_vcu118-fns-single-toe-iperf
It is suggested to close the GUI when launching this command.
Click to show
Once the FPGA has been programmed you can check if the link is up using the VIO (vio_cmac_synq_0) within Interfaces
hierarchy , the signal cmac_sync_0_cmac_aligned_sync
must value '1'.
If the board is attached through PCIe, the link can be checked using the cmac_stats
program within the Software folder. In order to perform this, after programming the FPGA a host reboot is mandatory so as to enumerate the PCIe devices to detect the XDMA (PCIe rescan has not been tested). Check README.md to download and install the driver. Execute cmac_stats
and you will get the stats of the CMAC and the Tx and Rx status.
By default Limago IP address is 192.168.0.5, network mask 255.255.255.0 and its MAC address is 00:0a:35:02:9d:e5
Once you have configured your HOST with a proper IP address in the same subnetwork as Limago you can use arping
and ping
to reach Limago.
arping -I <interface_name> 192.168.0.5
ping 192.168.0.5
This section describes how to test the echo application, valid for the project(s): vcu118-fns-single-toe-echo
In this case the Limago only echoes the payload of the connection to the port 15000, therefore you can use telnet
or ncat
to test it.
This section describes how to test the iperf
(version 2) application, valid for the project(s): vcu118-fns-single-toe-iperf
and alveou200-fns-single-toe-iperf
In this case, the FPGA can work both as a client and as a server. Make sure that you have installed iperf
(version 2) in the server machine.
- FPGA as a server, which means the FPGA just gets data. By default the FPGA is listening to the range of ports between 5000 to 5063, therefore you can target any of those ports. Run the following code in the server with the NIC connected to Limago.
iperf -c 192.168.0.5 -t 10 -i 1 -p 5011 --mss 1408 -e
- FPGA as a client, which means Limago opens the TCP connection and sends the data. Therefore, the HOST machine needs to communicate with Limago using the XDMA driver. Run the following code in the HOST machine attached to the FPGA:
First of all, the server machine must run iperf
(version 2) a as server iperf -s -i 1
. After that, you you can run the iperf application from the FPGA as a client.
sudo ./bin/hw_iperf2 -c <server_ip_address> -t 10 -p 5001 -e
If you use Limago, the TCP/IP stack or the checksum computation in your project please cite one of the following papers accordingly and/or link to the GitHub repository:
@inproceedings{sutter2018fpga,
title={{FPGA-based TCP/IP Checksum Offloading Engine for 100 Gbps Networks}},
author={Sutter, Gustavo and Ruiz, Mario and L{\'o}pez-Buedo, Sergio and Alonso, Gustavo},
booktitle={2018 International Conference on ReConFigurable Computing and FPGAs (ReConFig)},
year={2018},
organization={IEEE},
doi={10.1109/RECONFIG.2018.8641729},
ISSN={2640-0472},
month={Dec},
}
@INPROCEEDINGS{ruiz2019tcp,
title={{Limago: an FPGA-based Open-source 100~GbE TCP/IP Stack}},
author={Ruiz, Mario and Sidler, David and Sutter, Gustavo and Alonso, Gustavo and L{\'o}pez-Buedo, Sergio},
booktitle={{2019 29th International Conference on Field Programmable Logic and Applications (FPL)}},
year={2019},
month={Sep},
pages={286-292},
organization={IEEE},
doi={10.1109/FPL.2019.00053},
ISSN={1946-147X},
}
This is a collaborative project between:
- HPCN group of the Universidad Autónoma de Madrid. web
- The spin-off Naudit HPCN. web
- Systems Group of ETH Zürich University. web
So far these people have contributed to Limago
- José Fernando Zazo [email protected]
- Mario Ruiz [email protected]
- David Sidler [email protected]
- Gustavo Sutter [email protected]
- Gustavo Alonso [email protected]
- Sergio López-Buedo [email protected]
This project is a collaboration between the Systems Group of ETH Zürich, Switzerland and HPCN Group of UAM, Spain. Furthermore, the starting point of this implementation is the Scalable 10Gbps TCP/IP Stack Architecture for Reconfigurable Hardware by Sidler, D et al. The original implementation can be found in their github.
For this project we keep the BSD 3-Clause License
BSD 3-Clause License
Copyright (c) 2019,
HPCN Group, UAM Spain (hpcn-uam.es)
Systems Group, ETH Zurich (systems.ethz.ch)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.