Skip to content

brown-ivl/DiVa360

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiVa360: DiVa-360: The Dynamic Visual Dataset for Immersive Neural Fields

Cheng-You Lu1*, Peisen Zhou1*, Angela Xing1*, Chandradeep Pokhariya2, Arnab Dey3, Ishaan N Shah2, Rugved Mavidipalli1, Dylan Hu1, Andrew Comport3, Kefan Chen1, Srinath Sridhar1

1Brown University   2CVIT, IIIT Hyderabad   3I3S-CNRS/Université Côte d’Azur
*Corresponding author   

Introduction

We propose DiVa360, a real-world 360° dynamic visual dataset containing 21 object-centric sequences categorized by different motion types, 25 intricate hand-object interaction sequences, and 8 long-duration sequences for 17.4M frames.

diva360.mp4

Environment

Build conda environment using environment.yml, then follow instructions in each benchmark method to install required packages.

conda env create --file environment.yml
conda activate diva360_venv

Directory Structure

Example Directory Structure
.
├── assets
│   ├── calib_long
│   │   ├── image
│   │   └── segmented_ngp
│   ├── calib_short
│   │   ├── image
│   │   └── segmented_ngp
│   └── objects
│       ├── blue_car
│       │   ├── calib
│       │   ├── dynamic_data
│       │   │   ├── 150
│       │   │   ├── I-NGP
│       │   │   │   ├── test
│       │   │   │   ├── train
│       │   │   │   └── traj
│       │   │   ├── frames_1
│       │   │   ├── kplanes
│       │   │   │   ├── blue_car_00
│       │   │   │   │   └── test_images
│       │   │   │   ├── blue_car_00_IST
│       │   │   │   ├── blue_car_01
│       │   │   │   ├── blue_car_01_IST
│       │   │   │   ├── test
│       │   │   │   └── traj
│       │   │   ├── mixvoxels
│       │   │   │   ├── imgs_spiral_hr_all
│       │   │   │   └── imgs_test_all
│       │   │   └── stds_1
│       │   ├── image
│       │   ├── segmented_ngp
│       │   └── undist
│       └── …
├── generate_scripts
├── metadata
├── objects_scripts
│   ├── battery
│   ├── blue_car
│   ├── bunny
│   ├── chess
│   ├── chess_long
│   ├── clock
│   ├── crochet
│   ├── dog
│   ├── drum
│   ├── flip_book
│   ├── horse
│   ├── hour_glass
│   ├── jenga
│   ├── jenga_long
│   ├── k1_double_punch
│   ├── k1_hand_stand
│   ├── k1_push_up
│   ├── keyboard_mouse
│   ├── kindle
│   ├── legos
│   ├── maracas
│   ├── music_box
│   ├── origami
│   ├── painting
│   ├── pan
│   ├── peel_apple
│   ├── penguin
│   ├── piano
│   ├── plasma_ball
│   ├── plasma_ball_clip
│   ├── poker
│   ├── pour_salt
│   ├── pour_tea
│   ├── put_candy
│   ├── put_fruit
│   ├── puzzle
│   ├── red_car
│   ├── rubiks_cube
│   ├── scissor
│   ├── slice_apple
│   ├── soda
│   ├── stirling
│   ├── tambourine
│   ├── tea
│   ├── tornado
│   ├── trex
│   ├── truck
│   ├── unlock
│   ├── wall_e
│   ├── wolf
│   ├── world_globe
│   ├── writing_1
│   ├── writing_2
│   └── xylophone
├── src
└── utils

Instruction for Downloading DiVa360 from AWS S3

Setup

We store our dataset on Globus, so to download the data to your local machine, we use Globus Command Line Interface (Globus-CLI) and Globus Connect Personal (GCP). You will first need to install GCP. Follow these intructions depending on your machine: Mac, Windows, Linux.

Note: When you are installing GCP, you will have to name your collection/endpoint. You are free to name it however you choose, but we suggest naming it "<name> personal machine".

Next, you will need to install Globus-CLI and login. Run the following commands:

pip install globus-cli
globus login

This will take you to a login page. You can either log in through a listed institution, through any Google account, or through an ORCID iD. After logging in, you will see a terms of service page. To continue, click "Allow". To download the data, you will be copying the data from the DiVa360 endpoint to the endpoint you just created on your local machine when you installed GCP. First, setup the DiVa360 endpoint:

diva360_ep=8ac249c5-8d25-4faa-9247-745d0213c615

Next, setup your personal endpoint for your local machine:

globus endpoint local-id
personal_ep=<output of the above command>

Important Note: To transfer to your GCP endpoint, the GCP software must be running and connected for the transfer to complete. However, you can close your terminal after the transfer has started.

Download

Downloading raw data (note that this is a total of 1.4 TB of data):

# Download all raw data
globus transfer $diva360_ep:/raw_data/ $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/raw_data_long/ $personal_ep:<path to destination> --recursive

# Downloading a single sequence
globus transfer $diva360_ep:/raw_data/synced/2023-05-02_session_<sequence>_synced.tar.gz $personal_ep:<path to destination>/2023-05-02_session_<sequence>_synced.tar.gz
globus transfer $diva360_ep:/raw_data_long/synced/2023-10-21_session_<sequence>_synced.tar.gz $personal_ep:<path to destination>/2023-10-21_session_<sequence>_synced.tar.gz

Downloading processed data (note that this is a total of 1.8 TB of data):

# Download all processed data
globus transfer $diva360_ep:/processed_data/ $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/processed_data_long/ $personal_ep:<path to destination> --recursive

# Downloading a single sequence
globus transfer $diva360_ep:/processed_data/<sequence>/ $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/processed_data_long/<sequence>/ $personal_ep:<path to destination> --recursive

Downloading trained models (note that this is a total of 6 TB of data):

globus transfer $diva360_ep:/model_data/ $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/model_data_long/ $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/model_data_exp/ $personal_ep:<path to destination> --recursive

Downloading rendered videos (note that this is a total of 63.1 GB of data):

globus transfer $diva360_ep:/all_videos/ $personal_ep:<path to destination> --recursive

You can also transfer multiple files or folders at once using the batch transfer feature. Here is an example:

globus transfer --batch batch_transfer.txt $diva360_ep $personal_ep

Assuming you have the following batch_transfer.txt file:

# Copy a file
<path to file> <path to destination>/<file name>

# Copy a folder
<path to folder> <path to destination>/<folder name> --recursive

To check the status of your transfer, use the following command:

globus task show <task ID>

Sequences

Here are a list of sequences
  • battery
  • blue_car
  • bunny
  • chess
  • clock
  • dog
  • drum
  • flip_book
  • horse
  • hour_glass
  • jenga
  • k1_double_punch
  • k1_hand_stand
  • k1_push_up
  • keyboard_mouse
  • kindle
  • maracas
  • music_box
  • pan
  • peel_apple
  • penguin
  • piano
  • plasma_ball
  • plasma_ball_clip
  • poker
  • pour_salt
  • pour_tea
  • put_candy
  • put_fruit
  • red_car
  • scissor
  • slice_apple
  • soda
  • stirling
  • tambourine
  • tea
  • tornado
  • trex
  • truck
  • unlock
  • wall_e
  • wolf
  • world_globe
  • writing_1
  • writing_2
  • xylophone
Here are a list of long sequences
  • chess_long
  • crochet
  • jenga_long
  • legos
  • origami
  • painting
  • puzzle
  • rubiks_cube

Benchmark Methods

Please consider citing these methods if you think they are helpful! Below are methods modified for DiVa360 benchmarks.

I-NGP

MixVoxels

K-Planes

Using existing data

Take the blue car as an example.

# Download processed data
globus transfer --exclude "*" --include "transforms*" $diva360_ep:/processed_data/blue_car $personal_ep:<path to destination> --recursive
globus transfer $diva360_ep:/processed_data/blue_car/frames_1.tar.gz $personal_ep:<path to destination>/frames_1.tar.gz --recursive

# Please refer to the directory structure section
cp -r frames_1 ../code/DiVa360/assets/objects/blue_car/
cp transforms_* ../code/DiVa360/assets/objects/blue_car/

Run Benchmark

Please install the methods from in the Benchmark Methods section

I-NPG

# Train 
sh objects_scripts/blue_car/train_ingp.sh 

# Test and Benchmark
sh objects_scripts/blue_car/test_ingp.sh

# Render
sh objects_scripts/blue_car/traj_ingp_hr.sh

MixVoxels

# Train 
sh objects_scripts/blue_car/train_mixvoxels.sh

# Test and Benchmark
sh objects_scripts/blue_car/eval_mixvoxels.sh

# Render
sh objects_scripts/blue_car/render_mixvoxels.sh

K-Planes

# Train 
sh objects_scripts/blue_car/train_kplanes.sh

# Test
sh objects_scripts/blue_car/test_kplanes.sh

# Render
sh objects_scripts/blue_car/render_kplanes.sh

# Benchmark
python utils/move_kplanes_test.py --root assets/objects/ --name blue_car
python utils/benchmark.py --root assets/objects/blue_car/ --start 0 --num_frames 150 --target_path kplanes/test --wh_bg

Preprocessing

You can also preprocess raw data by yourself.

Take the blue car as an example.

Download raw data from s3:

# Download raw data
globus transfer $diva360_ep:/raw_data/synced/2023-05-02_session_blue_car_synced.tar.gz $personal_ep:<path to destination>/2023-05-02_session_blue_car_synced.tar.gz --recursive

# Decompress file
gzip -d 2023-05-02_session_blue_car_synced.tar.gz
tar -xf 2023-05-02_session_blue_car_synced.tar	

# Extract frames from the video
object_scripts/blue_car/move.sh <data path>/2023-05-02_session_blue_car_synced/synced

Camera pose estimation

# Download data for pose estimation
globus transfer $diva360_ep:/raw_data/2023-04-29_session_calibration_2.tar $personal_ep:<path to destination>/2023-04-29_session_calibration_2.tar
tar -xf 2023-04-29_session_calibration_2.tar

# If you are using long-duration object, download this one instead
globus transfer  $diva360_ep:/raw_data_long/2023-10-21_session_calib.tar.gz $personal_ep:<path to destination>/2023-10-21_session_calib.tar
gzip -d 2023-10-21_session_calib.tar.gz
tar -xf 2023-10-21_session_calib.tar

# Run pose estimation with colmap version 3.8
python src/colmap_calib.py -r <data path>/2023-04-29_session_calibration_2

# Please refer to the directory structure section
mv <data path>/2023-04-29_session_calibration_2/params.txt assets/calib_short/

Camera pose refinement through I-NGP (please compile the I-NGP from the benchmark method)

# Manually segment one frame and put it in calib_short
python src/refine_params.py --root_dir assets/calib_short/ --optimize_params --network ../models/instant-ngp/configs/nerf/base.json --roi 0.5 0.45 0.5 --n_steps 10000 --aabb_scale 4 --face_to_cam --gui

# optim_param.txt to transform.json
python utils/params2nerf.py --root assets/calib_short/ --use_kp

Segmentation

sh objects_scripts/blue_car/segment_frame.sh

Undistortion

sh objects_scripts/blue_car/undistortion.sh

Frequently Asked Questions (FAQ)

Q: What is the coordination system of the transform.json?

A: It follows the original NeRF coordinate system. The transform.json follows the I-NGP style, which can be used like the fox example. Please check nerfstudio for the details.

Q: How can I use it on other methods?

A: We suggest using llff or blender dataloader if the codebase supports it. The codebase should support the intrinsic matrix per camera.

Q: Why does the I-NGP segmentation not work well?

A: This is common situation. Tuning the parameter can solve the problem most of the time. We point out the limitations in the paper. hour_glass, plasma_ball, and plasma_ball_clip are segmented manually.

Q: Do I need to manually segment each object's first frame?

A: No, you can reuse the refined pose for other objects captured on the same date.

TODO

  • add Gaussian Splatting to the benchmark

Citation

If you find this dataset useful for your research, please consider citing:

@inproceedings{diva360,
    title={DiVa-360: The Dynamic Visual Dataset for Immersive Neural Fields},
    author={Cheng-You Lu and Peisen Zhou and Angela Xing and Chandradeep Pokhariya and Arnab Dey and Ishaan N Shah and Rugved Mavidipalli and Dylan Hu and Andrew Comport and Kefan Chen and Srinath Sridhar},
    booktitle = {Conference on Computer Vision and Pattern Recognition 2024},
    year={2024}
}