TensorFlow bindings for PySyft.
PySyft is a Python framework for secure, private deep learning. PySyft-TensorFlow brings secure, private deep learning to TensorFlow.
PySyft-TensorFlow is available on pip
pip install syft-tensorflow
NOTE: We aren't yet on a proper release schedule. Until then, we recommend building the code from source. The master branch is intended to be kept in line with this branch on the DropoutLabs fork of PySyft. If you have any trouble, please open an issue or reach out on Slack via the #team_tensorflow or #team_pysyft channels.
See the PySyft tutorials if you are unfamiliar with any Syft paradigms.
import tensorflow as tf
import syft
hook = sy.TensorFlowHook(tf)
# Simulates a remote worker (ie another computer)
remote = sy.VirtualWorker(hook, id="remote")
# Send data to the other worker
x = tf.constant(5).send(remote)
y = tf.constant(10).send(remote)
z = x * y
print(z.get())
# => 50
See CONTRIBUTING.
PySyft-Tensorflow was contributed by and continues to be maintained by the team at Dropout Labs.
Please reach out to [email protected] for support.