Introduction | Requirements | Motivation | Usage | Interoperability | Installation | Project Structure | Design Principles | Readers | Scripts | Contributing | Credits | License
tabutils is a Python library for reading and processing tabular data. It has a functional programming style API, excels at reading, large files, and can process 10+ file types.
With tabutils, you can
- Read csv/xls/xlsx/mdb/dbf files, and more!
- Type cast records (date, float, text...)
- Process Uñicôdë text
- Lazily stream files by default
- and much more...
tabutils has been tested and is known to work on Python 2.7, 3.4, and 3.5; PyPy 4.0; and PyPy3 2.4
File type | Recognized extension(s) | Reader | Dependency | Installation |
---|---|---|---|---|
Microsoft Access | mdb | read_mdb |
mdbtools | sudo port install mdbtools |
HTML table | html | read_html |
lxml [1] | pip install lxml |
[1] | If lxml isn't present, read_html will default to the builtin Python html reader |
[2] | records2array can be used without numpy by passing native=True in the function call. This will convert records into a list of native array.array objects. |
pandas is great, but installing it isn't exactly a walk in the park. It also doesn't play nice with PyPy. csvkit is an equally useful project, but it doesn't expose the same API when used as a library as it does via the command line. I designed tabutils to provide much of same functionality as pandas and csvkit, while using functional programming methods.
A simple data processing example is shown below:
First create a simple csv file (in bash)
echo 'col1,col2,col3\nhello,5/4/82,1\none,1/1/15,2\nhappy,7/1/92,3\n' > data.csv
Now we can read the file, manipulate the data a bit, and write it back to a new file.
from tabutils import io, process as pr, convert as cv
from io import open
# Load the csv file
records = io.read_csv('data.csv')
# `records` are iterators over the rows
row = next(records)
row
>>> {'col1': 'hello', 'col2': '5/4/82', 'col3': '1'}
# Let's replace the first row so as not to loose any data
records = pr.prepend(records, row)
# Guess column types. Note: `detect_types` returns a new `records`
# generator since it consumes rows during type detection
records, result = pr.detect_types(records)
{t['id']: t['type'] for t in result['types']}
>>> {'col1': 'text', 'col2': 'date', 'col3': 'int'}
# Now type cast the records. Note: most `tabutils.process` functions return
# generators, so lets wrap the result in a list to view the data
casted = list(pr.type_cast(records, result['types']))
casted[0]
>>> {'col1': 'hello', 'col2': datetime.date(1982, 5, 4), 'col3': 1}
# Cut out the first column of data and merge the rows to get the max value
# of the remaining columns. Note: since `merge` (by definition) will always
# contain just one row, it is returned as is (not wrapped in a generator)
cut_recs = pr.cut(casted, ['col1'], exclude=True)
merged = pr.merge(cut_recs, pred=bool, op=max)
merged
>>> {'col2': datetime.date(2015, 1, 1), 'col3': 3}
# Now write data back to a new csv file.
io.write('out.csv', cv.records2csv(merged))
with open('out.csv', 'utf-8') as f:
f.read()
>>> 'col2,col3\n2015-01-01,3\n'
tabutils is intended to be used directly as a Python library.
tabutils can read both filepaths and file-like objects. Additionally, all readers return equivalent records iterators, i.e., a generator of dictionaries with keys corresponding to the column names.
from io import open, StringIO
from tabutils import io
"""Read a filepath"""
records = io.read_json('path/to/file.json')
"""Read a file like object and de-duplicate the header"""
f = StringIO('col,col\nhello,world\n')
records = io.read_csv(f, dedupe=True)
"""View the first row"""
next(records)
>>> {'col': 'hello', 'col_2': 'world'}
"""Read the 1st sheet of an xls file object opened in text mode."""
# Also, santize the header names by converting them to lowercase and
# replacing whitespace and invalid characters with `_`.
with open('path/to/file.xls', 'utf-8') as f:
for row in io.read_xls(f, sanitize=True):
# do something with the `row`
pass
"""Read the 2nd sheet of an xlsx file object opened in binary mode"""
# Note: sheets are zero indexed
with open('path/to/file.xlsx') as f:
records = io.read_xls(f, encoding='utf-8', sheet=1)
first_row = next(records)
# do something with the `first_row`
"""Read any recognized file"""
records = io.read('path/to/file.geojson')
f.seek(0)
records = io.read(f, ext='csv', dedupe=True)
Please see Readers for a complete list of available readers and recognized file types.
Numerical analysis (à la pandas) [2]
In the following example, pandas
equivalent methods are preceded by -->
,
and command output is preceded by >>>
.
import itertools as it
import random
import numpy as np
import pandas as pd
from io import StringIO
from tabutils import io, process as pr, convert as cv, stats
# Create some data in the same structure as what the various `read...`
# functions output
header = ['A', 'B', 'C', 'D']
data = [(random.random() for _ in range(4)) for x in range(7)]
df = [dict(zip(header, d)) for d in data]
df[0]
>>> {'A': 0.53908..., 'B': 0.28919..., 'C': 0.03003..., 'D': 0.65363...}
"""Sort records by the value of column `B` --> df.sort_values(by='B')"""
next(pr.sort(df, 'B'))
>>> {'A': 0.53520..., 'B': 0.06763..., 'C': 0.02351..., 'D': 0.80529...}
"""Select column `A` --> df['A']"""
next(pr.cut(df, ['A']))
>>> {'A': 0.53908170489952006}
"""Select the first the rows of data --> df[0:3]"""
len(list(it.islice(df, 3)))
>>> 3
"""Select all data whose value for column `A` is less than 0.5
--> df[df.A < 0.5]
"""
next(pr.grep(df, [{'pattern': lambda x: x < 0.5}], ['A']))
>>> {'A': 0.21000..., 'B': 0.25727..., 'C': 0.39719..., 'D': 0.64157...}
# Note: since `aggregate` and `merge` (by definition) return just one row,
# they return them as is (not wrapped in a generator).
"""Calculate the mean of column `A` across all data --> df.mean()['A']"""
pr.aggregate(df, 'A', stats.mean)['A']
>>> 0.5410437473067938
"""Calculate the sum of each column across all data --> df.sum()"""
pr.merge(df, pred=bool, op=sum)
>>> {'A': 3.78730..., 'C': 2.82875..., 'B': 3.14195..., 'D': 5.26330...}
Text processing (à la csvkit) [3]
In the following example, csvkit
equivalent commands are preceded by -->
,
and command output is preceded by >>>
.
First create a few simple csv files (in bash)
echo 'col_1,col_2,col_3\n1,dill,male\n2,bob,male\n3,jane,female' > file1.csv
echo 'col_1,col_2,col_3\n4,tom,male\n5,dick,male\n6,jill,female' > file2.csv
Now we can read the files, manipulate the data, convert it to json, and write
it back to a new file. Also, note that since all readers return equivalent records
iterators, you can use them interchangeably (in place of read_csv
) to open
any supported file. E.g., read_xls
, read_sqlite
, etc.
import itertools as it
from tabutils import io, process as pr, convert as cv
"""Join multiple files together by stacking the contents
--> csvstack *.csv
"""
records = io.join('file1.csv', 'file2.csv')
next(records)
>>> {'col_1': '1', 'col_2': 'dill', 'col_3': 'male'}
next(it.islice(records, 4, None))
>>> {'col_1': '6', 'col_2': 'jill', 'col_3': 'female'}
# Now let's create a persistant records list
records = list(io.read_csv('file1.csv'))
"""Sort records by the value of column `col_2` --> csvsort -c col_2 file1.csv"""
next(pr.sort(records, 'col_2'))
>>> {'col_1': '2', 'col_2': 'bob', 'col_3': 'male'
"""Select column `col_2` --> csvcut -c col_2 file1.csv"""
next(pr.cut(records, ['col_2']))
>>> {'col_2': 'dill'}
"""Select all data whose value for column `col_2` contains `jane`
--> csvgrep -c col_1 -m jane file1.csv
"""
next(pr.grep(records, [{'pattern': 'jane'}], ['col_2']))
>>> {'col_1': '3', 'col_2': 'jane', 'col_3': 'female'}
"""Convert a csv file to json --> csvjson -i 4 file1.csv"""
io.write('file.json', cv.records2json(records))
with open('file.json', 'utf-8') as f:
f.read()
>>> '[{"col_1": "1", "col_2": "dill", "col_3": "male"}, {"col_1": "2",
... "col_2": "bob", "col_3": "male"}, {"col_1": "3", "col_2": "jane",
... "col_3": "female"}]'
Geo processing (à la mapbox) [4]
In the following example, mapbox
equivalent commands are preceded by -->
,
and command output is preceded by >>>
.
First create a few simple csv files (in bash)
echo 'id,lon,lat,type\\n11,10,20,Point\\n12,5,15,Point\\n' > file1.csv
echo 'id,lon,lat,type\\n13,15,20,Point\\n14,5,25,Point\\n' > file2.csv
Now we can read the files, manipulate the data, convert it to geojson, and write it back to a new file.
from io import open
from tabutils import io, process as pr, convert as cv
# Now lets open the files
f1, f2 = [open(fp, encoding='utf-8') for fp in ['file1.csv', 'file2.csv']]
"""Convert the csv files into GeoJSON files
--> fs = require('fs')
--> concat = require('concat-stream')
--> function convert(data) {
... csv2geojson.csv2geojson(data.toString(), {}, function(err, data) {
... console.log(data)
... })
... }
--> fs.createReadStream('file1.csv').pipe(concat(convert))
"""
geofiles = []
for f in [f1, f2]:
records = io.read_csv(f)
records, result = pr.detect_types(records)
casted_records = pr.type_cast(records, result['types'])
geo_f = cv.records2geojson(casted_records)
geofiles.append(geo_f)
"""Merge the GeoJSON files into one iterator
--> merge = require('geojson-merge')
--> fs = require('fs')
--> merged = merge(files.map(function(n) {
... return JSON.parse(fs.readFileSync(n));
... }))
"""
records = io.join(*geofiles, ext='geojson')
next(records)
>>> {'lat': 20, 'type': 'Point', 'lon': 10, 'id': 11}
"""Split the remaining records by a geojson feature and convert the first
feature to a geojson file --> geojsplit -k id file.geojson
"""
splits = pr.split(records, 'id')
records, name = next(splits)
name
>>> 12
cv.records2geojson(records).readline()
>>> '{"type": "FeatureCollection", "bbox": [5, 15, 5, 15], "features": '
... '[{"type": "Feature", "id": 12, "geometry": {"type": "Point", '
... '"coordinates": [5, 15]}, "properties": {"id": 12}}], "crs": {"type": '
... '"name", "properties": {"name": "urn:ogc:def:crs:OGC:1.3:CRS84"}}}'
# Finally, clean up by closing the open csv files
f1.close()
f2.close()
from tabutils import io, convert as cv
from io import StringIO, open
# First let's create a simple tsv file like object
f = StringIO('col1\tcol2\nhello\tworld\n')
f.seek(0)
# Next create a records list so we can reuse it
records = list(io.read_tsv(f))
records[0]
>>> {'col1': 'hello', 'col2': 'world'}
# Now we're ready to write the records data to file
"""Create a csv file like object"""
cv.records2csv(records).readline()
>>> 'col1,col2\n'
"""Create a json file like object"""
cv.records2json(records).readline()
>>> '[{"col1": "hello", "col2": "world"}]'
"""Write back csv to a filepath"""
io.write('file.csv', cv.records2csv(records))
with open('file.csv', 'utf-8') as f_in:
f_in.read()
>>> 'col1,col2\nhello,world\n'
"""Write back json to a filepath"""
io.write('file.json', cv.records2json(records))
with open('file.json', 'utf-8') as f_in:
f_in.readline()
>>> '[{"col1": "hello", "col2": "world"}]'
Please see the cookbook guide for more examples.
[3] | http://pandas.pydata.org/pandas-docs/stable/10min.html#min |
[4] | https://csvkit.readthedocs.org/en/0.9.1/cli.html#processing |
[5] | https://github.com/mapbox?utf8=%E2%9C%93&query=geojson |
tabutils plays nicely with NumPy and friends out of the box
from tabutils import process as pr
# First create some records and types. Also, convert the records to a list
# so we can reuse them.
records = [{'a': 'one', 'b': 2}, {'a': 'five', 'b': 10, 'c': 20.1}]
records, result = pr.detect_types(records)
records, types = list(records), result['types']
types
>>> [
... {'type': 'text', 'id': 'a'},
... {'type': 'int', 'id': 'b'},
... {'type': 'float', 'id': 'c'}]
import pandas as pd
from tabutils import convert as cv
"""Convert the records to a DataFrame"""
df = cv.records2df(records, types)
df
>>> a b c
... 0 one 2 NaN
... 1 five 10 20.1
# Alternatively, you can do `pd.DataFrame(records)`
"""Convert the DataFrame back to records"""
next(cv.df2records(df))
>>> {'a': 'one', 'b': 2, 'c': nan}
import numpy as np
from array import array
from tabutils import convert as cv
"""Convert records to a structured array"""
recarray = cv.records2array(records, types)
recarray
>>> rec.array([('one', 2, nan), ('five', 10, 20.100000381469727)],
... dtype=[('a', 'O'), ('b', '<i4'), ('c', '<f4')])
recarray.b
>>> array([ 2, 10], dtype=int32)
"""Convert records to a native array"""
narray = cv.records2array(records, types, native=True)
narray
>>> [[array('u', 'a'), array('u', 'b'), array('u', 'c')],
... [array('u', 'one'), array('u', 'five')],
... array('i', [2, 10]),
... array('f', [0.0, 20.100000381469727])]
"""Convert a 2-D NumPy array to a records generator"""
data = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
data
>>> array([[1, 2, 3],
... [4, 5, 6]], dtype=int32)
next(cv.array2records(data))
>>> {'column_1': 1, 'column_2': 2, 'column_3': 3}
"""Convert the structured array back to a records generator"""
next(cv.array2records(recarray))
>>> {'a': 'one', 'b': 2, 'c': nan}
"""Convert the native array back to records generator"""
next(cv.array2records(narray, native=True))
{'a': 'one', 'b': 2, 'c': 0.0}
(You are using a virtualenv, right?)
At the command line, install tabutils using either pip
(recommended)
pip install tabutils
or easy_install
easy_install tabutils
Please see the installation doc for more details.
┌── AUTHORS.rst
├── CHANGES.rst
├── CONTRIBUTING.rst
├── INSTALLATION.rst
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.rst
├── TODO.rst
├── data
│ ├── converted
│ │ ├── dbf.csv
│ │ ├── fixed.csv
│ │ ├── geo.csv
│ │ ├── geojson.csv
│ │ ├── json.csv
│ │ ├── json_multiline.csv
│ │ └── sheet_2.csv
│ └── test
│ ├── fixed.txt
│ ├── fixed_w_header.txt
│ ├── iris.csv
│ ├── irismeta.csv
│ ├── latin1.csv
│ ├── mac_newlines.csv
│ ├── newline.json
│ ├── no_header_row.csv
│ ├── test.csv
│ ├── test.dbf
│ ├── test.geojson
│ ├── test.html
│ ├── test.json
│ ├── test.mdb
│ ├── test.sqlite
│ ├── test.tsv
│ ├── test.xls
│ ├── test.xlsx
│ ├── test.yml
│ ├── utf16_big.csv
│ ├── utf16_little.csv
│ └── utf8.csv
├── dev-requirements.txt
├── examples.py
├── helpers
│ ├── check-stage
│ ├── clean
│ ├── pippy
│ ├── srcdist
│ └── wheel
├── manage.py
├── py2-requirements.txt
├── requirements.txt
├── setup.cfg
├── setup.py
├── tabutils
│ ├── __init__.py
│ ├── convert.py
│ ├── dbf.py
│ ├── fntools.py
│ ├── io.py
│ ├── process.py
│ ├── stats.py
│ ├── typetools.py
│ └── unicsv.py
├── tests
│ ├── __init__.py
│ ├── standard.rc
│ ├── test_fntools.py
│ ├── test_io.py
│ └── test_process.py
└── tox.ini
- prefer functions over objects
- provide enough functionality out of the box to easily implement the most common data analysis use cases
- make conversion between
records
,arrays
, andDataFrames
dead simple - whenever possible, lazily read objects and stream the result [5]
[6] | Notable exceptions are tabutils.process.group , tabutils.process.sort , tabutils.io.read_dbf , tabutils.io.read_yaml , and tabutils.io.read_html . These functions read the entire contents into memory up front. |
tabutils' available readers are outlined below:
File type | Recognized extension(s) | Default reader |
---|---|---|
Comma separated file | csv | read_csv |
dBASE/FoxBASE | dbf | read_dbf |
Fixed width file | fixed | read_fixed_fmt |
GeoJSON | geojson, geojson.json | read_geojson |
HTML table | html | read_html |
JSON | json | read_json |
Microsoft Access | mdb | read_mdb |
SQLite | sqlite | read_sqlite |
Tab separated file | tsv | read_tsv |
Microsoft Excel | xls, xlsx | read_xls |
YAML | yml, yaml | read_yaml |
Alternatively, tabutils provides a universal reader which will select the appropriate reader based on the file extension as specified in the above table.
from io import open
from tabutils import io
records1 = io.read('path/to/file.csv')
records2 = io.read('path/to/file.xls')
with open('path/to/file.json', encoding='utf-8') as f:
records3 = io.read(f, ext='json')
All readers take as their first argument, either a file path or file like object.
File like objects should be opened using Python's stdlib io.open
. If the file
is opened in binary mode io.open('/path/to/file')
, be sure to pass the proper
encoding if it is anything other than utf-8
, e.g.,
from io import open
with open('path/to/file.xlsx') as f:
records = io.read_xls(f, encoding='latin-1')
While each reader has kwargs specific to itself, the following table outlines the most common ones.
kwarg | type | description | default | implementing readers |
---|---|---|---|---|
mode | str | File open mode | rU | read_csv, read_fixed_fmt, read_geojson, read_html, read_json, read_tsv, read_xls, read_yaml |
encoding | str | File encoding | utf-8 | read_csv, read_dbf, read_fixed_fmt, read_geojson, read_html, read_json, read_tsv, read_xls, read_yaml |
has_header | bool | Data has a header row? | True | read_csv, read_fixed_fmt, read_tsv, read_xls |
first_row | int | First row (zero indexed) | 0 | read_csv, read_fixed_fmt, read_tsv, read_xls |
first_col | int | First column (zero indexed) | 0 | read_csv, read_fixed_fmt, read_tsv, read_xls |
sanitize | bool | Underscorify and lowercase field names? | False | read_csv, read_dbf, read_fixed_fmt, read_html, read_mdb, read_tsv, read_xls |
dedupe | bool | Deduplicate field names? | False | read_csv, read_fixed_fmt, read_html, read_mdb, read_tsv, read_xls |
sheet | int | Sheet to read (zero indexed) | 0 | read_xls |
table | int | Table to read (zero indexed) | 0 | read_dbf, read_html, read_mdb, read_sqlite |
tabutils comes with a built in task manager manage.py
pip install -r dev-requirements.txt
Run python linter and nose tests
manage lint
manage test
Please mimic the coding style/conventions used in this repo. If you add new classes or functions, please add the appropriate doc blocks with examples. Also, make sure the python linter and nose tests pass.
Please see the contributing doc for more details.
Shoutouts to csvkit, messytables, and pandas for heavily inspiring tabutils.
tabutils is distributed under the MIT License.