-
Notifications
You must be signed in to change notification settings - Fork 0
/
log-conform-Elastic_v9.h
executable file
·375 lines (311 loc) · 10.6 KB
/
log-conform-Elastic_v9.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/** Title: log-conform-elastic_v9.h
# Author: Vatsal Sanjay & Ayush Dixit
# Physics of Fluids
# Updated: Nov 03, 2024
# Changelog Nov 03, 2024:
- This is a legacy version and no longer in use.
- The current version is [log-conform-viscoelastic-scalar-2D](log-conform-viscoelastic-scalar-2D). Please use that instead.
- For details, see: [https://github.com/comphy-lab/Viscoelastic3D](https://github.com/comphy-lab/Viscoelastic3D)
*/
// The code is same as http://basilisk.fr/src/log-conform.h but written for purely elastic limit (lambda \to \infty)
// In this code, conform_p, conform_qq are in fact the Conformation tensor.
(const) scalar Gp = unity;
// (const) scalar lambda = unity;
#include "bcg.h"
symmetric tensor conform_p[], tau_p[];
#if AXI
scalar conform_qq[], tau_qq[];
#endif
event defaults (i = 0) {
if (is_constant (a.x))
a = new face vector;
foreach() {
foreach_dimension(){
tau_p.x.x[] = 0.;
conform_p.x.x[] = 1.;
}
tau_p.x.y[] = 0.;
conform_p.x.y[] = 0.;
#if AXI
tau_qq[] = 0;
conform_qq[] = 1.;
#endif
}
for (scalar s in {tau_p}) {
s.v.x.i = -1; // just a scalar, not the component of a vector
foreach_dimension(){
if (s.boundary[left] != periodic_bc) {
s[left] = neumann(0);
s[right] = neumann(0);
}
}
}
for (scalar s in {conform_p}) {
s.v.x.i = -1; // just a scalar, not the component of a vector
foreach_dimension(){
if (s.boundary[left] != periodic_bc) {
s[left] = neumann(0);
s[right] = neumann(0);
}
}
}
#if AXI
scalar s1 = tau_p.x.y;
s1[bottom] = dirichlet (0.);
#endif
#if AXI
scalar s2 = conform_p.x.y;
s2[bottom] = dirichlet (0.);
#endif
}
/**
## Numerical Scheme
The first step is to implement a routine to calculate the eigenvalues
and eigenvectors of the conformation tensor $\mathbf{A}$.
These structs ressemble Basilisk vectors and tensors but are just
arrays not related to the grid. */
typedef struct { double x, y;} pseudo_v;
typedef struct { pseudo_v x, y;} pseudo_t;
static void diagonalization_2D (pseudo_v * Lambda, pseudo_t * R, pseudo_t * A)
{
/**
The eigenvalues are saved in vector $\Lambda$ computed from the
trace and the determinant of the symmetric conformation tensor
$\mathbf{A}$. */
if (sq(A->x.y) < 1e-15) {
R->x.x = R->y.y = 1.;
R->y.x = R->x.y = 0.;
Lambda->x = A->x.x; Lambda->y = A->y.y;
return;
}
double T = A->x.x + A->y.y; // Trace of the tensor
double D = A->x.x*A->y.y - sq(A->x.y); // Determinant
/**
The eigenvectors, $\mathbf{v}_i$ are saved by columns in tensor
$\mathbf{R} = (\mathbf{v}_1|\mathbf{v}_2)$. */
R->x.x = R->x.y = A->x.y;
R->y.x = R->y.y = -A->x.x;
double s = 1.;
for (int i = 0; i < dimension; i++) {
double * ev = (double *) Lambda;
ev[i] = T/2 + s*sqrt(sq(T)/4. - D);
s *= -1;
double * Rx = (double *) &R->x;
double * Ry = (double *) &R->y;
Ry[i] += ev[i];
double mod = sqrt(sq(Rx[i]) + sq(Ry[i]));
Rx[i] /= mod;
Ry[i] /= mod;
}
}
/**
The stress tensor depends on previous instants and has to be
integrated in time. In the log-conformation scheme the advection of
the stress tensor is circumvented, instead the conformation tensor,
$\mathbf{A}$ (or more precisely the related variable $\Psi$) is
advanced in time.
In what follows we will adopt a scheme similar to that of [Hao \& Pan
(2007)](#hao2007). We use a split scheme, solving successively
a) the upper convective term:
$$
\partial_t \Psi = 2 \mathbf{B} + (\Omega \cdot \Psi -\Psi \cdot \Omega)
$$
b) the advection term:
$$
\partial_t \Psi + \nabla \cdot (\Psi \mathbf{u}) = 0
$$
c) the model term (but set in terms of the conformation
tensor $\mathbf{A}$). In an Oldroyd-B viscoelastic fluid, the model is
$$
\partial_t \mathbf{A} = -\frac{\mathbf{f}_r (\mathbf{A})}{\lambda}
$$
The implementation below assumes that the values of $\Psi$ and
$\conform_p$ are never needed simultaneously. This means that $\conform_p$ can
be used to store (temporarily) the values of $\Psi$ (i.e. $\Psi$ is
just an alias for $\conform_p$). */
event tracer_advection(i++)
{
tensor Psi = conform_p;
#if AXI
scalar Psiqq = conform_qq;
#endif
/**
### Computation of $\Psi = \log \mathbf{A}$ and upper convective term */
foreach() {
/**
We assume that the stress tensor $\mathbf{\tau}_p$ depends on the
conformation tensor $\mathbf{A}$ as follows
$$
\mathbf{\tau}_p = G_p (\mathbf{A}) =
G_p (\mathbf{A} - I)
$$
*/
double fa = (f[] > (1. - 1e-6) ? 1.0: 0.);
pseudo_t A;
A.x.y = fa*conform_p.x.y[];
foreach_dimension()
A.x.x = (fa != 0 ? fa*conform_p.x.x[]: 1.);
/**
In the axisymmetric case, $\Psi_{\theta \theta} = \log A_{\theta
\theta}$. Therefore $\Psi_{\theta \theta} = \log [ ( 1 + \text{fa}
\tau_{p_{\theta \theta}})]$. */
#if AXI
double Aqq = (fa != 0 ? fa*conform_qq[]: 1.);
Psiqq[] = log (Aqq);
#endif
/**
The conformation tensor is diagonalized through the
eigenvector tensor $\mathbf{R}$ and the eigenvalues diagonal
tensor, $\Lambda$. */
pseudo_v Lambda;
pseudo_t R;
diagonalization_2D (&Lambda, &R, &A);
/**
$\Psi = \log \mathbf{A}$ is easily obtained after diagonalization,
$\Psi = R \cdot \log(\Lambda) \cdot R^T$. */
Psi.x.y[] = R.x.x*R.y.x*log(Lambda.x) + R.y.y*R.x.y*log(Lambda.y);
foreach_dimension()
Psi.x.x[] = sq(R.x.x)*log(Lambda.x) + sq(R.x.y)*log(Lambda.y);
/**
We now compute the upper convective term $2 \mathbf{B} +
(\Omega \cdot \Psi -\Psi \cdot \Omega)$.
The diagonalization will be applied to the velocity gradient
$(\nabla u)^T$ to obtain the antisymmetric tensor $\Omega$ and
the traceless, symmetric tensor, $\mathbf{B}$. If the conformation
tensor is $\mathbf{I}$, $\Omega = 0$ and $\mathbf{B}= \mathbf{D}$. */
pseudo_t B;
double OM = 0.;
if (fabs(Lambda.x - Lambda.y) <= 1e-20) {
B.x.y = (u.y[1,0] - u.y[-1,0] +
u.x[0,1] - u.x[0,-1])/(4.*Delta);
foreach_dimension()
B.x.x = (u.x[1,0] - u.x[-1,0])/(2.*Delta);
}
else {
pseudo_t M;
foreach_dimension() {
M.x.x = (sq(R.x.x)*(u.x[1] - u.x[-1]) +
sq(R.y.x)*(u.y[0,1] - u.y[0,-1]) +
R.x.x*R.y.x*(u.x[0,1] - u.x[0,-1] +
u.y[1] - u.y[-1]))/(2.*Delta);
M.x.y = (R.x.x*R.x.y*(u.x[1] - u.x[-1]) +
R.x.y*R.y.x*(u.y[1] - u.y[-1]) +
R.x.x*R.y.y*(u.x[0,1] - u.x[0,-1]) +
R.y.x*R.y.y*(u.y[0,1] - u.y[0,-1]))/(2.*Delta);
}
double omega = (Lambda.y*M.x.y + Lambda.x*M.y.x)/(Lambda.y - Lambda.x);
OM = (R.x.x*R.y.y - R.x.y*R.y.x)*omega;
B.x.y = M.x.x*R.x.x*R.y.x + M.y.y*R.y.y*R.x.y;
foreach_dimension()
B.x.x = M.x.x*sq(R.x.x)+M.y.y*sq(R.x.y);
}
/**
We now advance $\Psi$ in time, adding the upper convective
contribution. */
double s = - Psi.x.y[];
Psi.x.y[] += dt*(2.*B.x.y + OM*(Psi.y.y[] - Psi.x.x[]));
foreach_dimension() {
s *= -1;
Psi.x.x[] += dt*2.*(B.x.x + s*OM);
}
/**
In the axisymmetric case, the governing equation for $\Psi_{\theta
\theta}$ only involves that component,
$$
\Psi_{\theta \theta}|_t - 2 L_{\theta \theta} =
\frac{\mathbf{f}_r(e^{-\Psi_{\theta \theta}})}{\lambda}
$$
with $L_{\theta \theta} = u_y/y$. Therefore step (a) for
$\Psi_{\theta \theta}$ is */
#if AXI
Psiqq[] += dt*2.*u.y[]/max(y, 1e-20);
#endif
}
/**
### Advection of $\Psi$
We proceed with step (b), the advection of the log of the
conformation tensor $\Psi$. */
#if AXI
advection ({Psi.x.x, Psi.x.y, Psi.y.y, Psiqq}, uf, dt);
#else
advection ({Psi.x.x, Psi.x.y, Psi.y.y}, uf, dt);
#endif
/**
### Convert back to \conform_p */
foreach() {
/**
It is time to undo the log-conformation, again by
diagonalization, to recover the conformation tensor $\mathbf{A}$
and to perform step (c).*/
pseudo_t A = {{Psi.x.x[], Psi.x.y[]}, {Psi.y.x[], Psi.y.y[]}}, R;
pseudo_v Lambda;
diagonalization_2D (&Lambda, &R, &A);
Lambda.x = exp(Lambda.x), Lambda.y = exp(Lambda.y);
A.x.y = R.x.x*R.y.x*Lambda.x + R.y.y*R.x.y*Lambda.y;
foreach_dimension()
A.x.x = sq(R.x.x)*Lambda.x + sq(R.x.y)*Lambda.y;
#if AXI
double Aqq = exp(Psiqq[]);
#endif
/**
We perform now step (c) by integrating
$\mathbf{A}_t = -\mathbf{f}_r (\mathbf{A})/\lambda$ to obtain
$\mathbf{A}^{n+1}$. This step is analytic,
$$
\int_{t^n}^{t^{n+1}}\frac{d \mathbf{A}}{\mathbf{I}- \mathbf{A}} =
\frac{\Delta t}{\lambda}
$$
*/
double intFactor = 1.0; //lambda[] != 0. ? exp(-dt/lambda[]): 0.;
#if AXI
Aqq = (1. - intFactor) + intFactor*exp(Psiqq[]);
#endif
A.x.y *= intFactor;
foreach_dimension()
A.x.x = (1. - intFactor) + A.x.x*intFactor;
/**
Then the Conformation tensor $\mathcal{A}_p^{n+1}$ is restored from
$\mathbf{A}^{n+1}$. */
double fa = (f[] > (1. - 1e-6) ? 1.0: 0.);
conform_p.x.y[] = fa*A.x.y;
tau_p.x.y[] = Gp[]*A.x.y;
#if AXI
conform_qq[] = fa != 0.0 ? fa*(Aqq): 1.0;
tau_qq[] = Gp[]*(Aqq - 1.);
#endif
foreach_dimension(){
conform_p.x.x[] = fa != 0.0 ? fa*(A.x.x): 1.0;
tau_p.x.x[] = Gp[]*(A.x.x - 1.);
}
}
}
/**
### Divergence of the viscoelastic stress tensor
The viscoelastic stress tensor $\mathbf{\tau}_p$ is defined at cell centers
while the corresponding force (acceleration) will be defined at cell
faces. Two terms contribute to each component of the momentum
equation. For example the $x$-component in Cartesian coordinates has
the following terms: $\partial_x \mathbf{\tau}_{p_{xx}} + \partial_y
\mathbf{\tau}_{p_{xy}}$. The first term is easy to compute since it can be
calculated directly from center values of cells sharing the face. The
other one is harder. It will be computed from vertex values. The
vertex values are obtained by averaging centered values. Note that as
a result of the vertex averaging cells `[]` and `[-1,0]` are not
involved in the computation of shear. */
event acceleration (i++)
{
face vector av = a;
foreach_face()
if (fm.x[] > 1e-20) {
double shear = (tau_p.x.y[0,1]*cm[0,1] + tau_p.x.y[-1,1]*cm[-1,1] -
tau_p.x.y[0,-1]*cm[0,-1] - tau_p.x.y[-1,-1]*cm[-1,-1])/4.;
av.x[] += (shear + cm[]*tau_p.x.x[] - cm[-1]*tau_p.x.x[-1])*
alpha.x[]/(sq(fm.x[])*Delta);
}
#if AXI
foreach_face(y)
if (y > 0.)
av.y[] -= (tau_qq[] + tau_qq[0,-1])*alpha.y[]/sq(y)/2.;
#endif
}