-
Notifications
You must be signed in to change notification settings - Fork 0
/
log-conform-viscoelastic-scalar-2D.h
581 lines (481 loc) · 17.7 KB
/
log-conform-viscoelastic-scalar-2D.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/** Title: log-conform-viscoelastic-2DNaxi.h
# Version: 2.0
# Main feature 1: A exists in across the domain and relaxes according to \lambda. The stress only acts according to G.
# Main feature 2: This is the 2D+axi **scalar** implementation of https://github.com/VatsalSy/BurstingBubble_VE_coated/blob/main/log-conform-viscoelastic.h.
# Author: Vatsal Sanjay
# Physics of Fluids
# Updated: Nov 3, 2024
# change log: Oct 18, 2024 (v1.0)
- 2D+axi implementation
- scalar implementation
*/
/** The code is same as http://basilisk.fr/src/log-conform.h but
- written with G-\lambda formulation.
- It also fixes the bug where [\sigma_p] = 0 & [\sigma_s] = \gamma\kappa instead of [\sigma_s+\sigma_p] = \gamma\kappa.
# change log: Nov 3, 2024 (v2.0)
- Added documentation and made the code an axi mirror version of [log-conform-viscoelastic-scalar-3D.h](log-conform-viscoelastic-scalar-3D.h).
- v2.0 is documentation only change to keep version number in sync with [log-conform-viscoelastic-scalar-3D.h](log-conform-viscoelastic-scalar-3D.h).
Other under the hood changes:
- Added a check for negative eigenvalues. If any are found, print the location and value of the offending eigenvalue. Please report this bug by opening an issue on the GitHub repository.
- Added some initialization functions for pseudo_v and pseudo_t.
*/
/** The code is same as http://basilisk.fr/src/log-conform.h but
- written with G-\lambda formulation.
- It also fixes the bug where [\sigma_p] = 0 & [\sigma_s] = \gamma\kappa instead of [\sigma_s+\sigma_p] = \gamma\kappa.
*/
/**
* # TODO: (non-critical, non-urgent)
* Ideally, we would like to consistently use tensor formulation to leverage ease of readability and maintainability. Also, tensors will be more efficient and would avoid bugs. It is also a prerequisite for axi compatibility of the 3D version of this code: [log-conform-viscoelastic-scalar-3D.h](log-conform-viscoelastic-scalar-3D.h). See: https://github.com/comphy-lab/Viscoelastic3D/issues/11 and https://github.com/comphy-lab/Viscoelastic3D/issues/5.
* - [ ] enfore all tensors and make the code generally compatible using foreach_dimensions
*/
/**
# The log-conformation method for some viscoelastic constitutive models
## Introduction
Viscoelastic fluids exhibit both viscous and elastic behaviour when
subjected to deformation. Therefore these materials are governed by
the Navier--Stokes equations enriched with an extra *elastic* stress
$Tij$
$$
\rho\left[\partial_t\mathbf{u}+\nabla\cdot(\mathbf{u}\otimes\mathbf{u})\right] =
- \nabla p + \nabla\cdot(2\mu_s\mathbf{D}) + \nabla\cdot\mathbf{T}
+ \rho\mathbf{a}
$$
where $\mathbf{D}=[\nabla\mathbf{u} + (\nabla\mathbf{u})^T]/2$ is the
deformation tensor and $\mu_s$ is the solvent viscosity of the
viscoelastic fluid.
The *polymeric* stress $\mathbf{T}$ represents memory effects due to
the polymers. Several constitutive rheological models are available in
the literature where the polymeric stress $\mathbf{T}$ is typically a
function $\mathbf{f_s}(\cdot)$ of the conformation tensor $\mathbf{A}$ such as
$$
\mathbf{T} = G_p \mathbf{f_s}(\mathbf{A})
$$
where $G_p$ is the elastic modulus and $\mathbf{f_s}(\cdot)$ is the relaxation function.
The conformation tensor $\mathbf{A}$ is related to the deformation of
the polymer chains. $\mathbf{A}$ is governed by the equation
$$
D_t \mathbf{A} - \mathbf{A} \cdot \nabla \mathbf{u} - \nabla
\mathbf{u}^{T} \cdot \mathbf{A} =
-\frac{\mathbf{f_r}(\mathbf{A})}{\lambda}
$$
where $D_t$ denotes the material derivative and
$\mathbf{f_r}(\cdot)$ is the relaxation function. Here, $\lambda$ is the relaxation time.
In the case of an Oldroyd-B viscoelastic fluid, $\mathbf{f}_s
(\mathbf{A}) = \mathbf{f}_r (\mathbf{A}) = \mathbf{A} -\mathbf{I}$,
and the above equations can be combined to avoid the use of
$\mathbf{A}$
$$
\mathbf{T} + \lambda (D_t \mathbf{T} -
\mathbf{T} \cdot \nabla \mathbf{u} -
\nabla \mathbf{u}^{T} \cdot \mathbf{T}) = 2 G_p\lambda \mathbf{D}
$$
[Comminal et al. (2015)](#comminal2015) gathered the functions
$\mathbf{f}_s (\mathbf{A})$ and $\mathbf{f}_r (\mathbf{A})$ for
different constitutive models.
## Parameters
The primary parameters are the relaxation time
$\lambda$ and the elastic modulus $G_p$. The solvent viscosity
$\mu_s$ is defined in the [Navier-Stokes
solver](navier-stokes/centered.h).
Gp and lambda are defined in [two-phaseVE.h](two-phaseVE.h).
*/
/**
## The log conformation approach
The numerical resolution of viscoelastic fluid problems often faces the
[High-Weissenberg Number
Problem](http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Research_files/Visco1.pdf).
This is a numerical instability appearing when strongly elastic flows
create regions of high stress and fine features. This instability
poses practical limits to the values of the relaxation time of the
viscoelastic fluid, $\lambda$. [Fattal \& Kupferman (2004,
2005)](#fattal2004) identified the exponential nature of the solution
as the origin of the instability. They proposed to use the logarithm
of the conformation tensor $\Psi = \log \, \mathbf{A}$ rather than the
viscoelastic stress tensor to circumvent the instability.
The constitutive equation for the log of the conformation tensor is
$$
D_t \Psi = (\Omega \cdot \Psi -\Psi \cdot \Omega) + 2 \mathbf{B} +
\frac{e^{-\Psi} \mathbf{f}_r (e^{\Psi})}{\lambda}
$$
where $\Omega$ and $\mathbf{B}$ are tensors that result from the
decomposition of the transpose of the tensor gradient of the
velocity
$$
(\nabla \mathbf{u})^T = \Omega + \mathbf{B} + N
\mathbf{A}^{-1}
$$
The antisymmetric tensor $\Omega$ requires only the memory of a scalar
in 2D since,
$$
\Omega = \left(
\begin{array}{cc}
0 & \Omega_{12} \\
-\Omega_{12} & 0
\end{array}
\right)
$$
For 3D, $\Omega$ is a skew-symmetric tensor given by
$$
\Omega = \left(
\begin{array}{ccc}
0 & \Omega_{12} & \Omega_{13} \\
-\Omega_{12} & 0 & \Omega_{23} \\
-\Omega_{13} & -\Omega_{23} & 0
\end{array}
\right)
$$
The log-conformation tensor, $\Psi$, is related to the
polymeric stress tensor $\mathbf{T}$, by the strain function
$\mathbf{f}_s (\mathbf{A})$
$$
\Psi = \log \, \mathbf{A} \quad \mathrm{and} \quad \mathbf{T} =
\frac{G_p}{\lambda} \mathbf{f}_s (\mathbf{A})
$$
where $Tr$ denotes the trace of the tensor and $L$ is an additional
property of the viscoelastic fluid.
We will use the Bell--Collela--Glaz scheme to advect the log-conformation
tensor $\Psi$. */
/*
TODO:
- Perhaps, instead of the Bell--Collela--Glaz scheme, we can use the conservative form of the advection equation and transport the log-conformation tensor with the VoF color function, similar to [http://basilisk.fr/src/navier-stokes/conserving.h](http://basilisk.fr/src/navier-stokes/conserving.h)
*/
#include "bcg.h"
scalar A11[], A12[], A22[]; // conformation tensor
scalar T11[], T12[], T22[]; // stress tensor
#if AXI
scalar AThTh[], T_ThTh[];
#endif
event defaults (i = 0) {
if (is_constant (a.x))
a = new face vector;
/*
initialize A and T
*/
for (scalar s in {A11, A22}) {
foreach () {
s[] = 1.;
}
}
for (scalar s in {T11, T12, T22, A12}) {
foreach(){
s[] = 0.;
}
}
#if AXI
foreach(){
T_ThTh[] = 0;
AThTh[] = 1.;
}
#endif
for (scalar s in {T11, T12, T22}) {
if (s.boundary[left] != periodic_bc) {
s[left] = neumann(0);
s[right] = neumann(0);
}
}
for (scalar s in {A11, A12, A22}) {
if (s.boundary[left] != periodic_bc) {
s[left] = neumann(0);
s[right] = neumann(0);
}
}
#if AXI
T12[bottom] = dirichlet (0.);
A12[bottom] = dirichlet (0.);
#endif
}
/**
## Useful functions in 2D
The first step is to implement a routine to calculate the eigenvalues
and eigenvectors of the conformation tensor $\mathbf{A}$.
These structs ressemble Basilisk vectors and tensors but are just
arrays not related to the grid. */
typedef struct { double x, y;} pseudo_v;
typedef struct { pseudo_v x, y;} pseudo_t;
// Function to initialize pseudo_v
static inline void init_pseudo_v(pseudo_v *v, double value) {
v->x = value;
v->y = value;
}
// Function to initialize pseudo_t
static inline void init_pseudo_t(pseudo_t *t, double value) {
init_pseudo_v(&t->x, value);
init_pseudo_v(&t->y, value);
}
static void diagonalization_2D (pseudo_v * Lambda, pseudo_t * R, pseudo_t * A)
{
/**
The eigenvalues are saved in vector $\Lambda$ computed from the
trace and the determinant of the symmetric conformation tensor
$\mathbf{A}$. */
if (sq(A->x.y) < 1e-15) {
R->x.x = R->y.y = 1.;
R->y.x = R->x.y = 0.;
Lambda->x = A->x.x; Lambda->y = A->y.y;
return;
}
double T = A->x.x + A->y.y; // Trace of the tensor
double D = A->x.x*A->y.y - sq(A->x.y); // Determinant
/**
The eigenvectors, $\mathbf{v}_i$ are saved by columns in tensor
$\mathbf{R} = (\mathbf{v}_1|\mathbf{v}_2)$. */
R->x.x = R->x.y = A->x.y;
R->y.x = R->y.y = -A->x.x;
double s = 1.;
for (int i = 0; i < dimension; i++) {
double * ev = (double *) Lambda;
ev[i] = T/2 + s*sqrt(sq(T)/4. - D);
s *= -1;
double * Rx = (double *) &R->x;
double * Ry = (double *) &R->y;
Ry[i] += ev[i];
double mod = sqrt(sq(Rx[i]) + sq(Ry[i]));
Rx[i] /= mod;
Ry[i] /= mod;
}
}
/**
The stress tensor depends on previous instants and has to be
integrated in time. In the log-conformation scheme the advection of
the stress tensor is circumvented, instead the conformation tensor,
$\mathbf{A}$ (or more precisely the related variable $\Psi$) is
advanced in time.
In what follows we will adopt a scheme similar to that of [Hao \& Pan
(2007)](#hao2007). We use a split scheme, solving successively
a) the upper convective term:
$$
\partial_t \Psi = 2 \mathbf{B} + (\Omega \cdot \Psi -\Psi \cdot \Omega)
$$
b) the advection term:
$$
\partial_t \Psi + \nabla \cdot (\Psi \mathbf{u}) = 0
$$
c) the model term (but set in terms of the conformation
tensor $\mathbf{A}$). In an Oldroyd-B viscoelastic fluid, the model is
$$
\partial_t \mathbf{A} = -\frac{\mathbf{f}_r (\mathbf{A})}{\lambda}
$$
*/
event tracer_advection(i++)
{
scalar Psi11 = A11;
scalar Psi12 = A12;
scalar Psi22 = A22;
#if AXI
scalar Psiqq = AThTh;
#endif
/**
### Computation of $\Psi = \log \mathbf{A}$ and upper convective term */
foreach() {
/**
We assume that the stress tensor $\mathbf{\tau}_p$ depends on the
conformation tensor $\mathbf{A}$ as follows
$$
\mathbf{\tau}_p = G_p (\mathbf{A}) =
G_p (\mathbf{A} - I)
$$
*/
pseudo_t A;
A.x.x = A11[]; A.y.y = A22[];
A.x.y = A12[];
#if AXI
double Aqq = AThTh[];
Psiqq[] = log (Aqq);
#endif
/**
The conformation tensor is diagonalized through the
eigenvector tensor $\mathbf{R}$ and the eigenvalues diagonal
tensor, $\Lambda$. */
pseudo_v Lambda;
init_pseudo_v(&Lambda, 0.0);
pseudo_t R;
init_pseudo_t(&R, 0.0);
diagonalization_2D (&Lambda, &R, &A);
/*
Check for negative eigenvalues -- this should never happen. If it does, print the location and value of the offending eigenvalue.
Please report this bug by opening an issue on the GitHub repository.
*/
if (Lambda.x <= 0. || Lambda.y <= 0.) {
fprintf(ferr, "Negative eigenvalue detected: Lambda.x = %g, Lambda.y = %g\n", Lambda.x, Lambda.y);
fprintf(ferr, "x = %g, y = %g, f = %g\n", x, y, f[]);
exit(1);
}
/**
$\Psi = \log \mathbf{A}$ is easily obtained after diagonalization,
$\Psi = R \cdot \log(\Lambda) \cdot R^T$. */
Psi12[] = R.x.x*R.y.x*log(Lambda.x) + R.y.y*R.x.y*log(Lambda.y);
Psi11[] = sq(R.x.x)*log(Lambda.x) + sq(R.x.y)*log(Lambda.y);
Psi22[] = sq(R.y.y)*log(Lambda.y) + sq(R.y.x)*log(Lambda.x);
/**
We now compute the upper convective term $2 \mathbf{B} +
(\Omega \cdot \Psi -\Psi \cdot \Omega)$.
The diagonalization will be applied to the velocity gradient
$(\nabla u)^T$ to obtain the antisymmetric tensor $\Omega$ and
the traceless, symmetric tensor, $\mathbf{B}$. If the conformation
tensor is $\mathbf{I}$, $\Omega = 0$ and $\mathbf{B}= \mathbf{D}$.
Otherwise, compute M = R * (nablaU)^T * R^T, where nablaU is the velocity gradient tensor. Then,
1. Calculate omega using the off-diagonal elements of M and eigenvalues:
omega = (Lambda.y*M.x.y + Lambda.x*M.y.x)/(Lambda.y - Lambda.x)
This represents the rotation rate in the eigenvector basis.
2. Transform omega back to physical space to get OM:
OM = (R.x.x*R.y.y - R.x.y*R.y.x)*omega
This gives us the rotation tensor Omega in the original coordinate system.
3. Compute B tensor components using M and R: B is related to M and R through:
In 2D:
$$
B_{xx} = R_{xx}^2 M_{xx} + R_{xy}^2 M_{yy} \\
B_{xy} = R_{xx}R_{yx} M_{xx} + R_{xy}R_{yy} M_{yy} \\
B_{yx} = B_{xy} \\
B_{yy} = -B_{xx}
$$
Where:
- R is the eigenvector matrix of the conformation tensor
- M is the velocity gradient tensor in the eigenvector basis
- The construction ensures B is symmetric and traceless
*/
pseudo_t B;
init_pseudo_t(&B, 0.0);
double OM = 0.;
if (fabs(Lambda.x - Lambda.y) <= 1e-20) {
B.x.y = (u.y[1,0] - u.y[-1,0] + u.x[0,1] - u.x[0,-1])/(4.*Delta);
foreach_dimension()
B.x.x = (u.x[1,0] - u.x[-1,0])/(2.*Delta);
} else {
pseudo_t M;
init_pseudo_t(&M, 0.0);
foreach_dimension() {
M.x.x = (sq(R.x.x)*(u.x[1] - u.x[-1]) +
sq(R.y.x)*(u.y[0,1] - u.y[0,-1]) +
R.x.x*R.y.x*(u.x[0,1] - u.x[0,-1] +
u.y[1] - u.y[-1]))/(2.*Delta);
M.x.y = (R.x.x*R.x.y*(u.x[1] - u.x[-1]) +
R.x.y*R.y.x*(u.y[1] - u.y[-1]) +
R.x.x*R.y.y*(u.x[0,1] - u.x[0,-1]) +
R.y.x*R.y.y*(u.y[0,1] - u.y[0,-1]))/(2.*Delta);
}
double omega = (Lambda.y*M.x.y + Lambda.x*M.y.x)/(Lambda.y - Lambda.x);
OM = (R.x.x*R.y.y - R.x.y*R.y.x)*omega;
B.x.y = M.x.x*R.x.x*R.y.x + M.y.y*R.y.y*R.x.y;
foreach_dimension()
B.x.x = M.x.x*sq(R.x.x)+M.y.y*sq(R.x.y);
}
/**
We now advance $\Psi$ in time, adding the upper convective
contribution. */
double s = -Psi12[];
Psi12[] += dt * (2. * B.x.y + OM * (Psi22[] - Psi11[]));
s *= -1;
Psi11[] += dt * 2. * (B.x.x + s * OM);
s *= -1;
Psi22[] += dt * 2. * (B.y.y + s * OM);
/**
In the axisymmetric case, the governing equation for $\Psi_{\theta
\theta}$ only involves that component,
$$
\Psi_{\theta \theta}|_t - 2 L_{\theta \theta} =
\frac{\mathbf{f}_r(e^{-\Psi_{\theta \theta}})}{\lambda}
$$
with $L_{\theta \theta} = u_y/y$. Therefore step (a) for
$\Psi_{\theta \theta}$ is */
#if AXI
Psiqq[] += dt*2.*u.y[]/max(y, 1e-20);
#endif
}
/**
### Advection of $\Psi$
We proceed with step (b), the advection of the log of the
conformation tensor $\Psi$. */
#if AXI
advection ({Psi11, Psi12, Psi22, Psiqq}, uf, dt);
#else
advection ({Psi11, Psi12, Psi22}, uf, dt);
#endif
/**
### Convert back to Aij */
foreach() {
/**
It is time to undo the log-conformation, again by
diagonalization, to recover the conformation tensor $\mathbf{A}$
and to perform step (c).*/
pseudo_t A = {{Psi11[], Psi12[]}, {Psi12[], Psi22[]}}, R;
init_pseudo_t(&R, 0.0);
pseudo_v Lambda;
init_pseudo_v(&Lambda, 0.0);
diagonalization_2D (&Lambda, &R, &A);
Lambda.x = exp(Lambda.x), Lambda.y = exp(Lambda.y);
A.x.y = R.x.x*R.y.x*Lambda.x + R.y.y*R.x.y*Lambda.y;
foreach_dimension()
A.x.x = sq(R.x.x)*Lambda.x + sq(R.x.y)*Lambda.y;
#if AXI
double Aqq = exp(Psiqq[]);
#endif
/**
We perform now step (c) by integrating
$\mathbf{A}_t = -\mathbf{f}_r (\mathbf{A})/\lambda$ to obtain
$\mathbf{A}^{n+1}$. This step is analytic,
$$
\int_{t^n}^{t^{n+1}}\frac{d \mathbf{A}}{\mathbf{I}- \mathbf{A}} =
\frac{\Delta t}{\lambda}
$$
*/
double intFactor = lambda[] != 0. ? exp(-dt/lambda[]): 0.;
#if AXI
Aqq = (1. - intFactor) + intFactor*exp(Psiqq[]);
#endif
A.x.y *= intFactor;
foreach_dimension()
A.x.x = (1. - intFactor) + A.x.x*intFactor;
/**
Then the Conformation tensor $\mathcal{A}_p^{n+1}$ is restored from
$\mathbf{A}^{n+1}$. */
A12[] = A.x.y;
T12[] = Gp[]*A.x.y;
#if AXI
AThTh[] = Aqq;
T_ThTh[] = Gp[]*(Aqq - 1.);
#endif
A11[] = A.x.x;
T11[] = Gp[]*(A.x.x - 1.);
A22[] = A.y.y;
T22[] = Gp[]*(A.y.y - 1.);
}
}
/**
### Divergence of the viscoelastic stress tensor
The viscoelastic stress tensor $\mathbf{\tau}_p$ is defined at cell centers
while the corresponding force (acceleration) will be defined at cell
faces. Two terms contribute to each component of the momentum
equation. For example the $x$-component in Cartesian coordinates has
the following terms: $\partial_x \mathbf{\tau}_{p_{xx}} + \partial_y
\mathbf{\tau}_{p_{xy}}$. The first term is easy to compute since it can be
calculated directly from center values of cells sharing the face. The
other one is harder. It will be computed from vertex values. The
vertex values are obtained by averaging centered values. Note that as
a result of the vertex averaging cells `[]` and `[-1,0]` are not
involved in the computation of shear. */
event acceleration (i++)
{
face vector av = a;
foreach_face(x){
if (fm.x[] > 1e-20) {
double shearX = (T12[0,1]*cm[0,1] + T12[-1,1]*cm[-1,1] -
T12[0,-1]*cm[0,-1] - T12[-1,-1]*cm[-1,-1])/4.;
av.x[] += (shearX + cm[]*T11[] - cm[-1]*T11[-1])*
alpha.x[]/(sq(fm.x[])*Delta);
}
}
foreach_face(y){
if (fm.y[] > 1e-20) {
double shearY = (T12[1,0]*cm[1,0] + T12[1,-1]*cm[1,-1] -
T12[-1,0]*cm[-1,0] - T12[-1,-1]*cm[-1,-1])/4.;
av.y[] += (shearY + cm[]*T22[] - cm[0,-1]*T22[0,-1])*
alpha.y[]/(sq(fm.y[])*Delta);
}
}
#if AXI
foreach_face(y)
if (y > 1e-20)
av.y[] -= (T_ThTh[] + T_ThTh[0,-1])*alpha.y[]/sq(y)/2.;
#endif
}