Suppose an array of length n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,4,4,5,6,7]
might become:
[4,5,6,7,0,1,4]
if it was rotated4
times.[0,1,4,4,5,6,7]
if it was rotated7
times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
that may contain duplicates, return the minimum element of this array.
Example 1:
Input: nums = [1,3,5] Output: 1
Example 2:
Input: nums = [2,2,2,0,1] Output: 0
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
is sorted and rotated between1
andn
times.
Follow up: This is the same as Find Minimum in Rotated Sorted Array but with duplicates. Would allow duplicates affect the run-time complexity? How and why?
class Solution:
def findMin(self, nums: List[int]) -> int:
l, r = 0, len(nums) - 1
while l < r:
m = (l + r) >> 1
if nums[m] > nums[r]:
l = m + 1
elif nums[m] < nums[r]:
r = m
else:
r -= 1
return nums[l]
class Solution {
public int findMin(int[] nums) {
int l = 0, r = nums.length - 1;
while (l < r) {
int m = (l + r) >>> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
}
}
class Solution {
public:
int findMin(vector<int>& nums) {
int l = 0, r = nums.size() - 1;
while (l < r) {
int m = (l + r) >> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
}
};
/**
* @param {number[]} nums
* @return {number}
*/
var findMin = function (nums) {
let l = 0,
r = nums.length - 1;
while (l < r) {
const m = (l + r) >> 1;
if (nums[m] > nums[r]) l = m + 1;
else if (nums[m] < nums[r]) r = m;
else --r;
}
return nums[l];
};
func findMin(nums []int) int {
left, right := 0, len(nums)-1
for left+1 < right {
mid := int(uint(left+right) >> 1)
if nums[mid] > nums[right] {
left = mid
} else if nums[mid] < nums[right] {
right = mid
} else {
right--
}
}
if nums[left] < nums[right] {
return nums[left]
}
return nums[right]
}