This repo contains the code and data to reproduce the examples in the paper Bayesian views of generalized additive modelling.
We begin by loading some useful packages and the data available here
contained in fish.RData
. Processing steps can be found at this
repo. We also clean-up the
column names for easier printing later.
library(mgcv)
## Loading required package: nlme
## This is mgcv 1.9-1. For overview type 'help("mgcv-package")'.
library(ggplot2)
library(viridis)
## Loading required package: viridisLite
library(gratia)
library(patchwork)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:nlme':
##
## collapse
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# load some fishy data
load("fish.RData")
# pretty printer
fish$Bottom <- fish$BOT_TEMP
fish$Surface <- fish$SURF_TEMP
fish$Depth <- fish$BOT_DEPTH
fish$Year <- fish$YEAR
fish$BOT_TEMP <- NULL
fish$SURF_TEMP <- NULL
fish$BOT_DEPTH <- NULL
fish$YEAR <- NULL
For this example we only use the data from 2010, so let’s select that first:
fish2010 <- subset(fish, Year==2010)
Now let’s fit our three models, using all the available covariates:
# fit using "normal" tprs basis
b_norm <- gam(NUMCPUE ~ s(x, y, k=40, bs="tp") +
s(Depth, k=15, bs="tp") +
s(Bottom, k=15, bs="tp") +
s(Surface, k=15, bs="tp"),
data=fish2010, family=tw(), method="REML")
# fit using shrinkage tprs basis (note use of "ts" basis)
b_term <- gam(NUMCPUE ~ s(x, y, k=40, bs="ts") +
s(Depth, k=15, bs="ts") +
s(Bottom, k=15, bs="ts") +
s(Surface, k=15, bs="ts"),
data=fish2010, family=tw(), method="REML")
# fit using double penalty (note use of "select=TRUE")
b_term_sel <- gam(NUMCPUE ~ s(x, y, k=40) +
s(Depth, k=15) +
s(Bottom, k=15) +
s(Surface, k=15),
data=fish2010, family=tw(), method="REML", select=TRUE)
We can then duplicate the plot from the paper, showing that the surface temperature smooth is estimated as zero by both the double penalty and shrinkage approaches:
# bit of fiddling to put these on single plots
model_list <- list(b_norm, b_term, b_term_sel)
names(model_list) <- c("No selection", "Shrinkage smoother", "Extra penalty")
term_list <- c("s(Depth)", "s(Bottom)", "s(Surface)")
plot_dat <- c()
# grab the per-smooth effects for each model, using gratias handy
# smooth_estimates function to help us
for(this_term in term_list){
for(i in seq_along(model_list)){
this_smoo <- gratia::smooth_estimates(model_list[[i]], this_term)
this_smoo$model <- names(model_list)[i]
this_smoo$term <- this_term
# some annoying processing to get things to plot nicely
this_smoo[["covar"]] <- this_smoo[[sub("s\\((.+)\\)", "\\1", this_term)]]
this_smoo[["covname"]] <- sub("s\\((.+)\\)", "\\1", this_term)
this_smoo[[sub("s\\((.+)\\)", "\\1", this_term)]] <- NULL
plot_dat <- rbind.data.frame(plot_dat, this_smoo)
}
}
ggplot(plot_dat, aes(x=covar, group=model, fill=model)) +
# uncertainty band using Nychka's result
geom_ribbon(aes(ymin=.estimate-2*.se, ymax=.estimate+2*.se), alpha=0.4) +
# mean effect line
geom_line(aes(y=.estimate, colour=model)) +
labs(y="Effect", fill="Model", colour="Model", x="") +
facet_wrap(~covname, scale="free", strip.position="bottom") +
theme_minimal() +
theme(strip.placement = "outside", legend.title=element_text(size=8), legend.text=element_text(size=6))
We can also see that the summary
shows that the effective degrees of
freedom (EDFs) for the surface temperature smooth is almost zero for
those models:
summary(b_norm)
##
## Family: Tweedie(p=1.745)
## Link function: log
##
## Formula:
## NUMCPUE ~ s(x, y, k = 40, bs = "tp") + s(Depth, k = 15, bs = "tp") +
## s(Bottom, k = 15, bs = "tp") + s(Surface, k = 15, bs = "tp")
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.09022 0.06844 45.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x,y) 31.651 36.432 5.420 < 2e-16 ***
## s(Depth) 8.241 10.069 5.121 9.82e-07 ***
## s(Bottom) 11.115 12.626 4.140 3.81e-06 ***
## s(Surface) 1.004 1.008 0.035 0.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.277 Deviance explained = 68.7%
## -REML = 1706.9 Scale est. = 3.4144 n = 376
summary(b_term)
##
## Family: Tweedie(p=1.745)
## Link function: log
##
## Formula:
## NUMCPUE ~ s(x, y, k = 40, bs = "ts") + s(Depth, k = 15, bs = "ts") +
## s(Bottom, k = 15, bs = "ts") + s(Surface, k = 15, bs = "ts")
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.10869 0.06832 45.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x,y) 31.017226 39 5.278 <2e-16 ***
## s(Depth) 7.868991 14 3.765 <2e-16 ***
## s(Bottom) 10.757123 14 3.605 <2e-16 ***
## s(Surface) 0.002427 14 0.000 0.94
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.281 Deviance explained = 68.3%
## -REML = 1728.9 Scale est. = 3.4342 n = 376
summary(b_term_sel)
##
## Family: Tweedie(p=1.745)
## Link function: log
##
## Formula:
## NUMCPUE ~ s(x, y, k = 40) + s(Depth, k = 15) + s(Bottom, k = 15) +
## s(Surface, k = 15)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.09795 0.06824 45.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x,y) 3.048e+01 39 5.461 <2e-16 ***
## s(Depth) 7.273e+00 14 3.486 <2e-16 ***
## s(Bottom) 1.028e+01 14 3.841 <2e-16 ***
## s(Surface) 1.863e-04 14 0.000 0.868
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.284 Deviance explained = 68.6%
## -REML = 1712.4 Scale est. = 3.4121 n = 376
Now to illustrate Nychka’s point, that the intervals generated using mean +/- se*Z_alpha have good across the function properties (but can under/over cover at the peaks/troughs).
# First do the simulation approach
set.seed(3141)
# generate coefficients using the mean and covariance from the model
n <- 1000
betas <- rmvn(n, coef(b_term), vcov(b_term))
# setup a prediction grid, since we only care about the Depth smooth
# we can set everything else to zero.
xx <- data.frame(Surface = 0,
Bottom = 0,
Depth = seq(min(fish2010$Depth), max(fish2010$Depth), length=400),
x = 0,
y = 0)
# build the prediction matrix ("L_p" in the paper)
Xp <- predict(b_term, xx, type="lpmatrix")
# here we only care about the Depth effect, so zero the rest of
# the coefficients
betas[, !grepl("Depth", colnames(betas))] <- 0
# make predictions
preds <- Xp %*% t(betas)
# Nychka intervals can be obtained using se.fit to get the per-prediction
# standard errors
nych <- predict(b_term, xx, se.fit=TRUE, type="terms")
# built the plot data, taking the quantiles for the simulation method and
# using the formula for the Nychka method
plot_dat <- data.frame(Depth=rep(xx$Depth, 2))
plot_dat$upper <- c(apply(preds, 1, quantile, 0.975), # quantile
nych$fit[, 2] + qnorm(0.975, 0, 1) * nych$se.fit[, 2]) # nychka
plot_dat$lower <- c(apply(preds, 1, quantile, 0.025), # quantile
nych$fit[, 2] - qnorm(0.975, 0, 1) * nych$se.fit[, 2]) # nychka
# create labels for plotting
plot_dat$type <- c(rep("Quantile", 400), rep("Nychka", 400))
# mean
plot_mean <- data.frame(Depth=xx$Depth, pred = nych$fit[, 2])
# put it together
preds <- as.data.frame(preds)
preds$Depth <- xx$Depth
preds <- pivot_longer(preds, cols=-c(Depth))
# make the plot
ggplot(plot_dat) +
geom_line(aes(y=value, group=name, x=Depth), lwd=0.15, data=preds, alpha=0.1) +
geom_ribbon(aes(x=Depth, ymin=lower, ymax=upper, group=type, fill=type), alpha=0.5) +
geom_line(aes(y=pred, x=Depth), lwd=0.3, lty=2, data=plot_mean) +
labs(x="Depth", y="s(Depth)", fill="Method") +
theme_minimal() +
coord_cartesian(expand=FALSE)
We can see there’s not much between these methods here!
Finally we use the general posterior sampling approach to make summaries of a spatio-temporal model at given time-points.
First we fit the model, where we use the tensor product (te
) to
construct a 2D smooth of space (x
, y
) and a 1D smooth of time
(Year
). The model knows the dimensions due to the grouping dimension
argument (d=c(2,1)
).
b_t2 <- gam(NUMCPUE ~ te(x, y, Year, k=10, bs="ts", d=c(2,1)),
data=fish, family=tw(), method="REML")
We can then run the Metropolis-Hastings sampler to get posterior samples
for the coefficients. Note that some fiddling with t.df
(degrees of
freedom of the proposal t-distribution) and rw.scale
(scale of
random walk) is needed to get reasonable acceptance.
set.seed(1971)
bs <- gam.mh(b_t2, ns=10000, burn=5000, thin=10, t.df=30, rw.scale=0.01)
## | | | 0% | |= | 1% | |= | 2% | |== | 3% | |=== | 4% | |==== | 5% | |==== | 6% | |===== | 7% | |====== | 8% | |====== | 9% | |======= | 10% | |======== | 11% | |======== | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 16% | |============ | 17% | |============= | 18% | |============= | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 23% | |================= | 24% | |================== | 25% | |================== | 26% | |=================== | 27% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |====================== | 31% | |====================== | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 36% | |========================== | 37% | |=========================== | 38% | |=========================== | 39% | |============================ | 40% | |============================= | 41% | |============================= | 42% | |============================== | 43% | |=============================== | 44% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 56% | |======================================== | 57% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 63% | |============================================= | 64% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |================================================ | 68% | |================================================ | 69% | |================================================= | 70% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 83% | |=========================================================== | 84% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 100%
## fixed acceptance = 0.1653 RW acceptance = 0.6195
Once we have our samples (stored in bs$bs
) we can construct our
predictions, using a similar procedure to the above.
# make the grid of stations for each year
xx <- grid %>%
arrange(YEAR, STATION)
xx$Year <- xx$YEAR
# generate the prediction matrix from the prediction data
Xp <- predict(b_t2, xx, type="lpmatrix")
# storage
res <- matrix(NA, nrow(bs$bs), length(unique(xx$Year)))
# now run through the algorithm presented in the paper
for(i in 1:nrow(bs$bs)){
# make predictions
preds <- exp(Xp %*% bs$bs[i, ])
# get our summary: sum predictions per time period
aa <- aggregate(preds, list(xx$Year), sum)
# store the per-year predictions
res[i, ] <- aa[, 2]
}
Now we have our summaries, we can do a little processing to get the figure
# storage for plot data
plot_dat <- data.frame(Year=sort(unique(xx$Year)))
# quantile uncertainty band
plot_dat$lower <- apply(res, 2, quantile, 0.025)
plot_dat$upper <- apply(res, 2, quantile, 0.975)
plot_dat$med <- apply(res, 2, quantile, 0.5)
plot_dat$mean <- apply(res, 2, mean)
# get the data summaries to overplot as points
fdat <- fish %>%
group_by(Year) %>%
mutate(total = sum(NUMCPUE)) %>%
select(Year, total) %>%
distinct()
# get the mean prediction using predict (we could use colMeans on res too)
xx$pp <- predict(b_t2, xx, type="response")
# plot all
ggplot() +
geom_ribbon(aes(x=Year, ymin=lower, ymax=upper),
alpha=0.5, data=plot_dat, fill="#A1E3B4") +
geom_point(aes(x=Year, y=total), data=fdat) +
geom_line(aes(y=med, x=Year), lwd=0.5, data=plot_dat, lty=2) +
labs(x="Year", y="Abundance") +
theme_minimal() +
coord_cartesian(ylim=range(fdat$total)+c(-700, 700),
xlim=range(xx$Year)+c(-1,1), expand=FALSE) +
theme(legend.position="bottom")