Yingying Deng, Fan Tang, Weiming Dong, Wen Sun, Feiyue Huang, Changsheng Xu
System overview. For the purpose of arbitrary style transfer, we propose a feed-forward network, which contains an encoder-decoder architecture and a multi-adaptation module. The multi-adaptation module is divided into three parts: position-wise content SA module, channel-wise style SA module, and CA module.
- python 3.6
- pytorch 1.4.0
- PIL, numpy, scipy
- tqdm
Pretrained models: vgg-model, decoder, MA_module
Please download them and put them into the floder ./model/
python test.py --content_dir input/content/ --style_dir input/style/ --output out
Traing set is WikiArt collected from WIKIART
Testing set is COCO2014
python train.py --style_dir ../../datasets/Images/ --content_dir ../../datasets/train2014 --save_dir models/ --batch_size 4
If you use our work in your research, please cite us using the following BibTeX entry ~ Thank you ^ . ^. Paper Link pdf
@inproceedings{deng:2020:arbitrary,
title={Arbitrary Style Transfer via Multi-Adaptation Network},
author={Deng, Yingying and Tang, Fan and Dong, Weiming and Sun, Wen, and Huang, Feiyue and Xu, Changsheng},
booktitle={Acm International Conference on Multimedia},
year={2020},
publisher = {ACM},
}