Documentation: http://pydeep.readthedocs.io/en/latest/index.html
Welcome ##################################
PyDeep is a machine learning / deep learning library with focus on unsupervised learning. The library has a modular design, is well documented and purely written in Python/Numpy. This allows you to understand, use, modify, and debug the code easily. Furthermore, its extensive use of unittests assures a high level of reliability and correctness.
News ''''''''''''''''''''''''''''''''''''''''''''''''''''
-
Auto encoder module added including denoising, sparse, contractive, slowness AE's
-
Unittests added, examples
-
tutorials added
-
Upcoming (mid-term): Feed Forward neural networks will be added
-
Future: MDP integration
-
Future: Deep Boltzmann machines will be added
-
Future: RBM/DBM in tensorFlow
Features index ''''''''''''''''''''''''''''''''''''''''''''''''''''
-
Principal Component Analysis (PCA)
- Zero Phase Component Analysis (ZCA)
-
Independent Component Analysis (ICA)
-
Autoencoder
-
Centered denoising autoencoder including various noise functions
-
Centered contractive autoencoder
-
Centered sparse autoencoder
-
Centered slowness autoencoder
-
Several regularization methods like l1,l2 norm, Dropout, gradient clipping, ...
-
-
Restricted Boltzmann machines
-
centered BinaryBinary RBM (BB-RBM)
-
centered GaussianBinary RBM (GB-RBM) with fixed variance
-
centered GaussianBinaryVariance RBM (GB-RBM) with trainable variance
-
centered BinaryBinaryLabel RBM (BBL-RBM)
-
centered GaussianBinaryLabel RBM (GBL-RBM)
-
centered BinaryRect RBM (BR-RBM)
-
centered RectBinary RBM (RB-RBM)
-
centered RectRect RBM (RR-RBM)
-
centered GaussianRect RBM (GR-RBM)
-
centered GaussianRectVariance RBM (GRV-RBM)
-
Sampling Algorithms for RBMs
-
Gibbs Sampling
-
Persistent Gibbs Sampling
-
Parallel Tempering Sampling
-
Independent Parallel Tempering Sampling
-
-
Training for RBMs
-
Exact gradient (GD)
-
Contrastive Divergence (CD)
-
Persistent Contrastive Divergence (PCD)
-
Independent Parallel Tempering Sampling
-
-
Log-likelihodd estimation for RBMs
-
Exact Partition function
-
Annealed Importance Sampling (AIS)
-
reverse Annealed Importance Sampling (AIS)
-
-
Scientific use
The library contains code I have written during my PhD research allowing you to reproduce the results described in the following publications.
-
Gaussian-binary restricted Boltzmann machines for modeling natural image statistics. Melchior, J., Wang, N., & Wiskott, L.. (2017). PLOS ONE, 12(2), 1–24. <http://doi.org/10.1371/journal.pone.0171015>
_ -
How to Center Deep Boltzmann Machines. Melchior, J., Fischer, A., & Wiskott, L.. (2016). Journal of Machine Learning Research, 17(99), 1–61. <http://jmlr.org/papers/v17/14-237.html>
_ -
Gaussian-binary Restricted Boltzmann Machines on Modeling Natural Image statistics Wang, N., Melchior, J., & Wiskott, L.. (2014). (Vol. 1401.5900). arXiv.org e-Print archive. <http://arxiv.org/abs/1401.5900>
_ -
How to Center Binary Restricted Boltzmann Machines (Vol. 1311.1354). Melchior, J., Fischer, A., Wang, N., & Wiskott, L.. (2013). arXiv.org e-Print archive. <http://arxiv.org/pdf/1311.1354.pdf>
_ -
An Analysis of Gaussian-Binary Restricted Boltzmann Machines for Natural Images. Wang, N., Melchior, J., & Wiskott, L.. (2012). In Proc. 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 25–27, Bruges, Belgium (pp. 287–292). <https://www.ini.rub.de/PEOPLE/wiskott/Reprints/WangMelchiorEtAl-2012a-ProcESANN-RBMImages.pdf>
_ -
Learning Natural Image Statistics with Gaussian-Binary Restricted Boltzmann Machines. Melchior, J, 29.05.2012. Master’s thesis, Applied Computer Science, Univ. of Bochum, Germany. <https://www.ini.rub.de/PEOPLE/wiskott/Reprints/Melchior-2012-MasterThesis-RBMs.pdf>
_
IF you want to use PyDeep in your publication, you can cite it as follows.
.. code-block:: latex
@misc{melchior2017pydeep, title={PyDeep}, author={Melchior, Jan}, year={2017}, publisher={GitHub}, howpublished={\url{https://github.com/MelJan/PyDeep.git}}, }
Contact:
Jan Melchior <https://www.ini.rub.de/the_institute/people/jan-melchior/>
_