Skip to content

Commit

Permalink
Merge pull request #160 from randomir/refactor-perf-tests
Browse files Browse the repository at this point in the history
Refactor perf tests
  • Loading branch information
randomir authored Jun 25, 2019
2 parents 6f76ec3 + 1102d24 commit 28f742a
Show file tree
Hide file tree
Showing 3 changed files with 177 additions and 135 deletions.
135 changes: 0 additions & 135 deletions perf.py

This file was deleted.

175 changes: 175 additions & 0 deletions perf/perf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
#!/usr/bin/env python

# Copyright 2018 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Performance tests."""

import os
import sys
import json
from itertools import chain
from functools import partial
from collections import OrderedDict
from glob import glob

import dimod
import hybrid

from dwave.system import DWaveSampler, EmbeddingComposite
from dwave_qbsolv import QBSolv


problems_per_group = 10

problems = list(chain(
sorted(glob('../problems/qbsolv/bqp50_*'))[:problems_per_group],
sorted(glob('../problems/qbsolv/bqp100_*'))[:problems_per_group],
sorted(glob('../problems/qbsolv/bqp250_*'))[:problems_per_group],
sorted(glob('../problems/qbsolv/bqp500_*'))[:problems_per_group],
sorted(glob('../problems/qbsolv/bqp1000_*'))[:problems_per_group],
sorted(glob('../problems/qbsolv/bqp2500_*'))[:problems_per_group],
sorted(glob('../problems/random-chimera/2048*'))[:problems_per_group],
sorted(glob('../problems/random-chimera/8192*'))[:problems_per_group],
sorted(glob('../problems/ac3/*'))[:problems_per_group],
))

workflows = [
("10s-tabu",
lambda **kw: hybrid.TabuProblemSampler(timeout=10000)),

("10k-sa",
lambda **kw: (hybrid.IdentityDecomposer()
| hybrid.SimulatedAnnealingSubproblemSampler(sweeps=10000)
| hybrid.SplatComposer())),

("qbsolv-like",
lambda qpu, energy_threshold, **kw: hybrid.Loop(hybrid.Race(
hybrid.InterruptableTabuSampler(timeout=200),
hybrid.EnergyImpactDecomposer(size=50, rolling=True, rolling_history=0.15)
| hybrid.QPUSubproblemAutoEmbeddingSampler(qpu_sampler=qpu)
| hybrid.SplatComposer()
) | hybrid.ArgMin(),
max_iter=100, convergence=10,
terminate=None if energy_threshold is None else lambda en: en <= energy_threshold)),

("tiling-chimera",
lambda qpu, energy_threshold, **kw: hybrid.Loop(hybrid.Race(
hybrid.InterruptableTabuSampler(timeout=200),
hybrid.TilingChimeraDecomposer(size=(16,16,4))
| hybrid.QPUSubproblemExternalEmbeddingSampler(qpu_sampler=qpu)
| hybrid.SplatComposer(),
) | hybrid.ArgMin(),
max_iter=100, convergence=10,
terminate=None if energy_threshold is None else lambda en: en <= energy_threshold)),
]

samplers = [
("kerberos",
lambda init_sample, energy_threshold, **kw: partial(
hybrid.KerberosSampler().sample,
init_sample=init_sample, energy_threshold=energy_threshold)),

("qbsolv-classic",
lambda energy_threshold, **kw: partial(
QBSolv().sample,
target=energy_threshold)),

("qbsolv-qpu",
lambda qpu, energy_threshold, **kw: partial(
QBSolv().sample,
solver=EmbeddingComposite(qpu),
target=energy_threshold)),
]


def run(problems, workflows, samplers, n_runs=1, targets=None):
results = OrderedDict()
targets = targets or {}

def workflow_runner(bqm, factory, energy_threshold=None, qpu=None, **kwargs):
workflow = factory(qpu=qpu, energy_threshold=energy_threshold)

init_state = hybrid.State.from_sample(hybrid.min_sample(bqm), bqm)
with hybrid.tictoc() as timer:
samples = workflow.run(init_state).result().samples

return samples, timer

def sampler_runner(bqm, factory, energy_threshold=None, qpu=None, **kwargs):
sampler = factory(
init_sample=lambda: hybrid.min_sample(bqm),
energy_threshold=energy_threshold,
qpu=qpu
)

with hybrid.tictoc() as timer:
samples = sampler(bqm)

return samples, timer

# reuse the cloud client
qpu = DWaveSampler()

for path in problems:
problem = os.path.splitext(os.path.basename(path))[0]

target_energy = targets.get(problem)
results[problem] = OrderedDict()

with open(path) as fp:
bqm = dimod.BinaryQuadraticModel.from_coo(fp)

for runner, solvers in [(workflow_runner, workflows),
(sampler_runner, samplers)]:
for solver_name, factory in solvers:
run_results = []

for run in range(n_runs):
case = '{!r} with {!r}, run={!r}, target={!r}'.format(
problem, solver_name, run, target_energy)

try:
samples, timer = runner(bqm, factory, qpu=qpu,
energy_threshold=target_energy)

except Exception as exc:
print("FAILED {case}: {exc!r}".format(**locals()))
run_results.append(dict(error=repr(exc)))

else:
print("case={case!r}"
" energy={samples.first.energy!r},"
" wallclock={timer.dt!r}".format(**locals()))
run_results.append(dict(energy=samples.first.energy,
wallclock=timer.dt))

results[problem][solver_name] = run_results

return results


if __name__ == "__main__":
# Usage: $0 [target_energies_json]
# Outputs info to stdout, json to stderr.

# load target energies, if provided
targets = {}
if len(sys.argv) > 1:
with open(sys.argv[1]) as fp:
targets = json.load(fp)

results = run(problems[:1], workflows, samplers, n_runs=1, targets=targets)

print(json.dumps(results), file=sys.stderr)
2 changes: 2 additions & 0 deletions perf/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
-r ../requirements.txt
dwave-qbsolv

0 comments on commit 28f742a

Please sign in to comment.