This is an original Pytorch Implementation for our paper "EMCA: Efficient Multi-Scale Channel Attention Module"
Attention mechanisms have been explored with CNNs,both across the spatial and channel dimensions. However,all the existing methods devote the attention modules to cap-ture local interactions from a uni-scale. This paper tacklesthe following question: Can one consolidate multi-scale ag-gregation while learning channel attention more efficiently?To this end, we avail channel-wise attention over multi-ple feature scales, which empirically shows its aptitude toreplace the limited local and uni-scale attention modules.EMCA is lightweight and can efficiently model the globalcontext further it is easily integrated into any feed-forwardCNN architectures and trained in an end-to-end fashion. Wevalidate our novel architecture through comprehensive ex-periments on image classification, object detection and in-stance segmentation with different backbones. Our experi-ments show consistent gains in performances against theircounterparts, where our proposed module, named EMCA,outperforms other channel attention techniques in accuracyand latency trade-off. We also conduct experiments thatprobe the robustness of the learned representations.
Method | Model | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | ECA | SRM | ||||||||||||||
ALL | 187 | 11.231 | 70.59 | 89.78 | xx | 192 | 11.148 | 70.75 | 89.74 | xx | 154 | 11.152 | 70.96 | 89.81 | xx | |
First | R-18 | 204 | 11.189 | 70.91 | 89.96 | xx | 212 | 11.148 | 70.63 | 89.85 | xx | 165 | 11.150 | 71.31 | 90.07 | xx |
Last | 204 | 11.189 | 70.92 | 89.83 | xx | 212 | 11.148 | 70.81 | 89.84 | xx | 165 | 11.150 | 71.04 | 90.00 | xx | |
All | 101 | 20.938 | 73.87 | 91.65 | xx | 107 | 20.788 | 74.13 | 91.68 | xx | 82 | 20.795 | 73.98 | 91.68 | xx | |
First | R-34 | 122 | 20.829 | 73.84 | 91.64 | xx | 122 | 20.788 | 74.20 | 91.84 | xx | 96 | 20.790 | 74.51 | 91.91 | xx |
Last | 122 | 20.829 | 73.64 | 91.49 | xx | 122 | 20.788 | 73.75 | 91.47 | xx | 96 | 20.790 | 73.63 | 91.44 | xx | |
All | 90 | 26.772 | 76.80 | 93.39 | xx | 87 | 24.373 | 77.12 | 93.68 | xx | 71 | 24.402 | 77.13 | 93.51 | xx | |
First | R-50 | 97 | 25.037 | 76.56 | 93.28 | xx | 98 | 24.373 | 77.02 | 93.49 | xx | 81 | 24.380 | 76.98 | 93.41 | xx |
Last | 97 | 25.037 | 75.71 | 92.60 | xx | 98 | 24.373 | 76.37 | 93.18 | xx | 81 | 24.380 | 76.73 | 93.26 | xx |
S | N`_i-j | Model | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights | FPS | #.P (M) | Top-1(%) | Top-5(%) | Weights |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | ECA | SRM | |||||||||||||||
N/A | N/A | R-18 | 187 | 11.231 | 70.59 | 89.78 | xx | 192 | 11.148 | 70.75 | 89.74 | xx | 154 | 11.152 | 70.96 | 89.81 | xx |
0 | 0 | 204 | 11.189 | 70.91 | 89.96 | xx | 212 | 11.148 | 70.63 | 89.85 | xx | 165 | 11.150 | 71.31 | 90.07 | xx | |
1 | 1 | 156 | 11.189 | 71.02 | 89.98 | xx | 174 | 11.148 | 70.83 | 89.96 | xx | 123 | 11.150 | 71.20 | 90.00 | xx | |
1 | N_i-j | 160 | 11.190 | 71.00 | 90.00 | xx | 170 | 11.148 | 71.04 | 89.99 | xx | 113 | 11.150 | 71.02 | 90.00 | xx | |
i-1 | 1 | 153 | 11.190 | 71.02 | 90.12 | xx | 169 | 11.148 | 70.59 | 89.78 | xx | 113 | 11.150 | 71.00 | 89.81 | xx | |
N/A | N/A | R-34 | 101 | 20.938 | 73.87 | 91.65 | xx | 107 | 20.788 | 74.13 | 91.68 | xx | 82 | 20.795 | 73.98 | 91.68 | xx |
0 | 0 | 122 | 20.829 | 73.84 | 91.64 | xx | 122 | 20.788 | 74.20 | 91.84 | xx | 96 | 20.790 | 74.51 | 91.91 | xx | |
1 | 1 | 109 | 20.829 | 74.33 | 91.89 | xx | 109 | 20.788 | 74.39 | 91.81 | xx | 82 | 20.790 | 74.39 | 91.77 | xx | |
1 | N_i-j | 107 | 20.829 | 74.40 | 91.89 | xx | 107 | 20.788 | 74.46 | 91.70 | xx | 81 | 20.790 | 74.38 | 91.87 | xx | |
i-1 | 1 | 103 | 20.829 | 74.02 | 91.74 | xx | 108 | 20.788 | 74.14 | 91.81 | xx | 80 | 20.790 | 74.57 | 91.90 | xx | |
N/A | N/A | R-50 | 90 | 26.772 | 76.80 | 93.39 | xx | 87 | 24.373 | 77.12 | xx | 93.68 | 71 | 24.402 | 77.13 | 93.51 | xx |
0 | 0 | 97 | 25.037 | 76.56 | 93.28 | xx | 98 | 24.373 | 77.02 | 93.49 | xx | 81 | 24.380 | 76.98 | 93.41 | xx | |
1 | 1 | 88 | 25.037 | 77.10 | 93.49 | xx | 94 | 24.373 | 76.98 | 93.55 | xx | 70 | 24.380 | 77.00 | 93.72 | xx | |
1 | N_i-j | 90 | 25.037 | 77.33 | 93.52 | xx | 92 | 24.373 | 77.13 | 93.49 | xx | 70 | 24.380 | 77.20 | 93.54 | xx | |
i-1 | 1 | 89 | 25.037 | 76.85 | 93.42 | xx | 91 | 24.373 | 76.82 | 93.41 | xx | 71 | 24.380 | 77.05 | 93.50 | xx |
S | N'_i-j | Model | FPS | #.P (M) | Top-1 | Top-5 | FPS | #.P (M) | Top-1 | Top-5 | FPS | #.P (M) | Top-1 | Top-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | ECA | SRM | ||||||||||||
N/A | N/A | R-18 | 187 | 11.231 | 70.59 | 89.78 | 192 | 11.148 | 70.75 | 89.74 | 154 | 11.152 | 70.96 | 89.81 |
0 | 0 | 204 | 11.189 | 70.91 | 89.96 | 212 | 11.148 | 70.63 | 89.85 | 165 | 11.150 | 71.31 | 90.07 | |
1, | 1 | 156 | 11.189 | 71.02 | 89.98 | 174 | 11.148 | 70.83 | 89.96 | 123 | 11.150 | 71.20 | 90.00 | |
1 | N_i-j | 160 | 11.190 | 71.00 | 90.00 | 170 | 11.148 | 71.04 | 89.99 | 113 | 11.150 | 71.02 | 90.00 | |
i-1 | 1 | 153 | 11.190 | 71.02 | 90.12 | 169 | 11.148 | 70.59 | 89.78 | 113 | 11.150 | 71.00 | 89.81 | |
N/A, | N/A | R-34 | 101 | 20.938 | 73.87 | 91.65 | 107 | 20.788 | 74.13 | 91.68 | 82 | 20.795 | 73.98 | 91.68 |
0, | 0 | 122 | 20.829 | 73.84 | 91.64 | 122 | 20.788 | 74.20 | 91.84 | 96 | 20.790 | 74.51 | 91.91 | |
1, | 1 | 109 | 20.829 | 74.33 | 91.89 | 109 | 20.788 | 74.39 | 91.81 | 82 | 20.790 | 74.39 | 91.77 | |
1, | N_i-j | 107 | 20.829 | 74.40 | 91.89 | 107 | 20.788 | 74.46 | 91.70 | 81 | 20.790 | 74.38 | 91.87 | |
i-1, | 1 | 103 | 20.829 | 74.02 | 91.74 | 108 | 20.788 | 74.14 | 91.81 | 80 | 20.790 | 74.57 | 91.90 | |
N/A, | N/A | R-50 | 90 | 26.772 | 76.80 | 93.39 | 87 | 24.373 | 77.12 | 93.68 | 71 | 24.402 | 77.13 | 93.51 |
0, | 0 | 97 | 25.037 | 76.56 | 93.28 | 98 | 24.373 | 77.02 | 93.49 | 81 | 24.380 | 76.98 | 93.41 | |
1, | 1 | 88 | 25.037 | 77.10 | 93.49 | 94 | 24.373 | 76.98 | 93.55 | 70 | 24.380 | 77.00 | 93.72 | |
1, | N_i-j | 90 | 25.037 | 77.33 | 93.52 | 92 | 24.373 | 77.13 | 93.49 | 70 | 24.380 | 77.20 | 93.54 | |
i-1 | 1 | 89 | 25.037 | 76.85 | 93.42 | 91 | 24.373 | 76.82 | 93.41 | 71 | 24.380 | 77.05 | 93.50 |
Methods | Model | #.P (M) | GFLOPs | Top-1(RI) | Top-5 | FPS | FPS* | FPS** |
---|---|---|---|---|---|---|---|---|
ResNet | R-18 | 11.148 | 1.694 | 70.40 | 89.45 | 270 | 23552 | 859 |
+SENet | 11.231 | 1.695 | 70.59 | 89.78 | 187 | 21760 | 839 | |
+EMCA-SE | 11.190 | 1.695 | 71.00(215) | 90.00 | 160 | 17313 | 813 | |
+ECANet | 11.148 | 1.695 | 70.78 | 89.92 | 192 | 22287 | 848 | |
+ECANet* | 11.148 | 1.695 | 70.75 | 89.74 | 192 | 22287 | 848 | |
+EMCA-ECA | 11.148 | 1.695 | 71.04(83) | 89.99 | 170 | 19023 | 833 | |
+SRM* | 11.152 | 1.695 | 70.96 | 89.81 | 154 | 18794 | 823 | |
+EMCA-SRM | 11.150 | 1.694 | 71.02(10) | 90.00 | 113 | 15190 | 803 | |
ResNet | R-34 | 20.788 | 3.419 | 73.31 | 91.40 | 168 | 19712 | 840 |
+SENet | 20.938 | 3.421 | 73.87 | 91.65 | 101 | 14279 | 805 | |
+EMCA-SE | 20.829 | 3.421 | 74.41 (96) | 91.90 | 107 | 14372 | 812 | |
+ECANet | 20.788 | 3.420 | 74.21 | 91.83 | 107 | 14067 | 825 | |
+ECANet* | 20.788 | 3.420 | 74.13 | 91.68 | 107 | 14067 | 825 | |
+EMCA-ECA | 20.788 | 3.421 | 74.46 (40) | 91.70 | 107 | 14080 | 822 | |
+SRM* | 20.795 | 3.419 | 73.98 | 91.68 | 82 | 12655 | 803 | |
+EMCA-SRM | 20.790 | 3.419 | 74.38 (59) | 91.87 | 81 | 12579 | 795 | |
ResNet | R-50 | 24.373 | 3.829 | 75.89 | 92.85 | 124 | 10032 | 668 |
+SENet | 26.772 | 3.837 | 76.80 | 93.39 | 90 | 8156 | 597 | |
+EMCA-SE | 25.037 | 3.835 | 77.33 (58) | 93.52 | 90 | 8099 | 589 | |
+ECANet | 24.373 | 3.834 | 77.48 | 93.68 | 87 | 8517 | 591 | |
+ECANet * | 24.373 | 3.834 | 77.12 | 93.68 | 87 | 8517 | 591 | |
+EMCA-ECA | 24.373 | 3.834 | 77.13 (1) | 93.49 | 92 | 8615 | 600 | |
+SRM * | 24.402 | 3.829 | 77.13 | 93.51 | 71 | 6745 | 536 | |
+EMCA-SRM | 24.380 | 3.829 | 77.20 (6) | 93.54 | 70 | 6698 | 532 |
Methods | Model | #.P (M) | GFLOPs | Top-1 | Top-5 | FPS | FPS* | FPS** |
---|---|---|---|---|---|---|---|---|
ResNet | R-18 | 11.148 | 1.694 | 70.40 | 89.45 | 270 | 23552 | 859 |
SENet | 11.231 | 1.695 | 70.59 | 89.78 | 187 | 21760 | 839 | |
ECANet* | 11.148 | 1.695 | 70.75 | 89.74 | 192 | 22287 | 839 | |
SRM* | 11.152 | 1.694 | 70.96 | 89.81 | 154 | 18794 | 823 | |
FCANet* | 11.231 | 1.694 | 70.98 | 90.00 | 119 | 17680 | 808 | |
BAM | 11.712 | 1.821 | 75.98 | 92.82 | 91 | 7159 | 527 | |
CBAM | 11.234 | 1.695 | 70.73 | 89.91 | 104 | 8734 | 789 | |
EMCA-ECA | 11.148 | 1.695 | 71.04 | 89.99 | 170 | 19023 | 833 | |
EMCA-SRM | 11.150 | 1.694 | 71.02 | 90.00 | 113 | 15190 | 803 | |
EMCA-SE | 11.190 | 1.695 | 71.00 | 90.00 | 160 | 17313 | 813 | |
ResNet | R-34 | 20.788 | 3.419 | 73.31 | 91.4 | 168 | 19712 | 840 |
SENet | 20.938 | 3.421 | 73.87 | 91.65 | 101 | 14279 | 805 | |
ECANet* | 20.788 | 3.420 | 74.13 | 91.68 | 107 | 14067 | 825 | |
SRM* | 20.795 | 3.419 | 73.98 | 91.68 | 82 | 12655 | 803 | |
FCANet* | 20.938 | 3.419 | 74.18 | 91.75 | 87 | 13094 | 812 | |
CBAM | 20.943 | 3.420 | 74.01 | 91.76 | 59 | 12001 | 760 | |
EMCA-ECA | 20.788 | 3.421 | 74.46 | 91.70 | 107 | 14080 | 822 | |
EMCA-SRM | 20.790 | 3.419 | 74.38 | 91.87 | 81 | 12579 | 795 | |
EMCA-SE | 20.829 | 3.421 | 74.41 | 91.90 | 107 | 14372 | 812 | |
ResNet | R-50 | 24.373 | 3.829 | 75.89 | 92.85 | 124 | 10032 | 668 |
SENet | 26.772 | 3.837 | 76.80 | 93.39 | 90 | 8156 | 597 | |
ECANet* | 24.373 | 3.834 | 77.12 | 93.68 | 87 | 8517 | 591 | |
SRM* | 24.402 | 3.829 | 77.13 | 93.51 | 71 | 6745 | 536 | |
FCANet* | 26.772 | 3.831 | 77.27 | 93.70 | 74 | 7984 | 549 | |
EPSANet* | 21.517 | 3.373 | 77.31 | 93.72 | 28 | 802 | 388 | |
SANet* | 24.373 | 3.832 | 77.25 | 93.66 | 68 | 6670 | 406 | |
A^2Nets | 33.006 | 6.502 | 77.00 | 93.50 | N/A | N/A | N/A | |
BAM | 25.92 | 3.946 | 75.98 | 92.82 | 91 | 7159 | 527 | |
CBAM | 26.775 | 3.837 | 77.34 | 93.69 | 55 | 2460 | 208 | |
EMCA-ECA | 24.373 | 3.834 | 77.13 | 93.49 | 92 | 8615 | 600 | |
EMCA-SRM | 24.380 | 3.829 | 77.20 | 93.54 | 71 | 6698 | 532 | |
EMCA-SE | 25.037 | 3.835 | 77.33 | 93.52 | 90 | 8099 | 589 |
Methods | Detectors | #.P (M) | GFLOPs | AP | AP_50 | AP_75 | AP_S | AP_M | AP_L |
---|---|---|---|---|---|---|---|---|---|
ResNet-50 | 41.53 | 207.07 | 36.4 | 58.2 | 39.2 | 21.8 | 40.0 | 46.2 | |
+SE | 44.02 | 207.18 | 37.7 | 60.1 | 40.9 | 22.9 | 41.9 | 48.2 | |
EMCA+SE | 42.56 | 207.18 | 38.1 | 60.6 | 50.2 | 23.6 | 42.2 | 48.4 | |
+ECA | 41.53 | 207.18 | 38.0 | 60.6 | 40.9 | 23.4 | 42.1 | 48.0 | |
+EMCA+ECA | Faster R-CNN | 41.53 | 207.18 | 38.2 | 60.9 | 50.0 | 23.7 | 42.2 | 48.2 |
ResNet-50 | 44.18 | 275.58 | 37.2 | 58.9 | 40.3 | 22.2 | 40.7 | 48.0 | |
+1 NL | 46.50 | 288.70 | 38.0 | 59.8 | 41.0 | N/A | N/A | N/A | |
+GC | 46.90 | 279.60 | 39.4 | 61.6 | 42.4 | N/A | N/A | N/A | |
+SE | 46.67 | 275.69 | 38.7 | 60.9 | 42.1 | 23.4 | 42.7 | 50.0 | |
+EMCA+SE | 45.13 | 275.69 | 39.0 | 61.4 | 42.3 | 23.7 | 42.9 | 50.1 | |
+ECA | 44.18 | 275.69 | 39.0 | 61.3 | 42.1 | 24.2 | 42.8 | 49.9 | |
+EMCA+ECA | Mask R-CNN | 44.18 | 275.69 | 39.1 | 61.5 | 42.1 | 24.4 | 42.9 | 49.9 |
ResNet-50 | 37.74 | 239.32 | 35.6 | 55.5 | 38.2 | 20.0 | 39.6 | 46.8 | |
+SE | 40.23 | 239.43 | 37.1 | 57.2 | 39.9 | 21.2 | 40.7 | 49.3 | |
+EMCA+SE | 38.88 | 239.43 | 37.2 | 57.4 | 39.9 | 21.2 | 40.7 | 49.3 | |
+ECA | 37.74 | 239.43 | 37.3 | 57.7 | 39.6 | 21.9 | 41.3 | 48.9 | |
+EMCA+ECA | RetinaNet | 37.74 | 239.43 | 37.3 | 57.8 | 39.6 | 21.9 | 41.3 | 48.9 |
Methods | #.P (M) | GFLOPs | AP | AP_50 | AP_75 | AP_S | AP_M | AP_L |
---|---|---|---|---|---|---|---|---|
ResNet-50 | 44.18 | 275.58 | 34.1 | 55.5 | 36.2 | 16.1 | 36.7 | 50.0 |
+SE | 46.67 | 275.69 | 35.4 | 57.4 | 37.8 | 17.1 | 38.6 | 51.8 |
+EMCA+SE | 45.13 | 275.69 | 35.7 | 58.1 | 38.0 | 17.8 | 39.0 | 51.9 |
+ECA | 44.18 | 275.69 | 35.6 | 58.1 | 37.7 | 17.6 | 39.0 | 51.8 |
+EMCA+ECA | 44.18 | 275.69 | 35.7 | 58.4 | 37.7 | 17.9 | 39.1 | 51.9 |