Skip to content

frangam/artdet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings

License: GNU 3 GitHub all releases

This is the official implementation code of the paper "ArtDet: Machine Learning Software for Automated Detection of Art Deterioration in Easel Paintings" (Paper)

[Paper] [Dataset] [BibTeX]

Installation

1. Clone our repository:

git clone https://github.com/frangam/artdet.git
cd artdet

2. Set up Python 3.12 and create the environment

  1. Install Python 3.12 (if not already installed). On macOS or Linux:

    sudo apt update
    sudo apt install -y python3.12 python3.12-venv python3.12-dev

    For macOS (if using Homebrew):

    brew install [email protected]
  2. Create a virtual environment using Python 3.12:

    python3.12 -m venv venv
  3. Activate the environment:

    On macOS/Linux:

    source venv/bin/activate

    On Windows:

    .\venv\Scripts\activate

3. Install Mask-RCNN updated version to work with Tensorflow 2:

git clone https://github.com/alsombra/Mask_RCNN-TF2.git
cd Mask_RCNN-TF2
pip install -r requirements.txt
python setup.py install

4. Install our custom dependencies:

cd ..
pip install -r requirements.txt

5. Run the web app:

python src/run.py

Then, the wep app is running on http://127.0.0.1:5000

Dataset

You can download our ArtInsight Dataset at: DOI

Place images in this folder: data/--- data/train/--- data/val/---

Model Checkpoints

Click the links below to download the checkpoint for the corresponding model type.

Locate the downloaded model to this path: model/---

Citation

If you use our code in your research, please use the following BibTeX entry:

@article{GARCIAMORENO2024101917,
title = {ARTDET: Machine learning software for automated detection of art deterioration in easel paintings},
journal = {SoftwareX},
volume = {28},
pages = {101917},
year = {2024},
issn = {2352-7110},
doi = {https://doi.org/10.1016/j.softx.2024.101917},
url = {https://www.sciencedirect.com/science/article/pii/S2352711024002875},
author = {Francisco M. Garcia-Moreno and Jesús Cortés Alcaraz and José Manuel {del Castillo de la Fuente} and Luis Rodrigo Rodríguez-Simón and María Visitación Hurtado-Torres}
}

And also cite our Dataset:

(Submitted to)


@article{Garcia-MorenoArtInsight,
  title={ArtInsight: A Detailed Dataset for Detecting Deterioration in Easel Paintings},
  author={Garcia-Moreno, Francisco Manuel and del Castillo de la Fuente, Jose Manuel  and Rodríguez-Simón, Luis Rodrigo and Hurtado-Torres, María Visitación},
  year={2024},
journal={Data in Brief}
  doi={pending},
  url={},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published