Tensorflow implementation mobilenetv2-yolov3 and efficientnet-yolov3 inspired by keras-yolo3
Backend:
- MobilenetV2
- Efficientnet
- Darknet53
Callback:
- mAP
- Tensorboard extern callback
Loss:
- MSE
- GIOU
- Adversarial loss
Train:
- Cosine learning rate
- Auto augment
Tensorflow:
- Tensorflow2 Ready
- tf.data pipeline
- Convert model to tensorflow lite model
- Multi GPU training
- TPU support
- TensorRT support
Serving:
- Tensorflow Serving warm up request
- Tensorflow Serving JAVA Client
- Tensorflow Serving Python Client
- Tensorflow Serving Service Control Client
- Tensorflow Serving Server Build and Plugins develop
pip install -r requirements.txt
python main.py --help
- Format file name like [name]_[number].[extension]
Example:
voc_train_3998.txt
2. If you are using txt dataset, please format records like [image_path] [,[xmin ymin xmax ymax class]]
(for convenience, you can modify voc_text.py to parse your data to specific data format), else you should modify voc_annotation.py, then run
python voc_annotation.py
to parse your data to tfrecords.
Example:
/image/path 179 66 272 290 14 172 38 317 349 14 276 2 426 252 14 1 32 498 365 13
3. Run:
python main.py --mode=TRAIN --train_dataset_glob=<your dataset glob> --epochs=50 --epochs=50 --mode=TRAIN
python main.py --mode=IMAGE --model=<your_model_path>
python main.py --mode=MAP --model=<your_model_path> --test_dataset_glob=<your dataset glob>
python main.py --mode=SERVING --model=<your_model_path>
python main.py --config=mobilenetv2.yaml
Set up tensorflow.js model (Live Demo: https://fsx950223.github.io/mobilenetv2-yolov3/tfjs/)
- Create a web server on project folder
- Open browser and enter [your_url:your_port]/tfjs
- Download pascal tfrecords from here.
- Download pre-trained mobilenetv2-yolov3 model(VOC2007) here
- Download pre-trained efficientnet-yolov3 model(VOC2007) here
- Download pre-trained efficientnet-yolov3 model(VOC2007+2012) here
Network: Mobilenetv2+Yolov3
Input size: 416*416
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.6721874861775297
bicycle ap: 0.7844226664948993
bird ap: 0.6863393529648882
boat ap: 0.5102715372530052
bottle ap: 0.4098093697072679
bus ap: 0.7646277543282962
car ap: 0.8000339732789448
cat ap: 0.8681120849855787
chair ap: 0.4021823009684314
cow ap: 0.6768311030872428
diningtable ap: 0.626045232887253
dog ap: 0.8293983813984888
horse ap: 0.8315961581768014
motorbike ap: 0.771283337747543
person ap: 0.7298645793931624
pottedplant ap: 0.3081565644702266
sheep ap: 0.6510012751038824
sofa ap: 0.6442699680945367
train ap: 0.8025086962000969
tvmonitor ap: 0.6239227675451299
mAP: 0.6696432295131602
GPU inference time (GTX1080Ti): 19ms
CPU inference time (i7-8550U): 112ms
Model size: 37M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.7770436248733187
bicycle ap: 0.822183784348553
bird ap: 0.7346967323068865
boat ap: 0.6142903989882571
bottle ap: 0.4518063126765959
bus ap: 0.782237197681936
car ap: 0.8138978890046222
cat ap: 0.8800232369515162
chair ap: 0.4531520519719176
cow ap: 0.6992367978932157
diningtable ap: 0.6765065569475968
dog ap: 0.8612118810883834
horse ap: 0.8559580684256001
motorbike ap: 0.8027311717682002
person ap: 0.7280218883512792
pottedplant ap: 0.35520418960051925
sheep ap: 0.6833401035128458
sofa ap: 0.6753841073186044
train ap: 0.8107647793504738
tvmonitor ap: 0.6726791558585905
mAP: 0.7075184964459456
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007+VOC2012
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.8572154850266848
bicycle ap: 0.8129962658687486
bird ap: 0.8325678324285539
boat ap: 0.7061501348114156
bottle ap: 0.5603823420846883
bus ap: 0.8536452418769342
car ap: 0.8395446870008888
cat ap: 0.9200504816535645
chair ap: 0.514644868267842
cow ap: 0.8202171886452714
diningtable ap: 0.7370149790284737
dog ap: 0.900374518831019
horse ap: 0.8632567146990895
motorbike ap: 0.8147344820261591
person ap: 0.7690434789031615
pottedplant ap: 0.4576271726152926
sheep ap: 0.8006580581981677
sofa ap: 0.7478146395952494
train ap: 0.8783508559769437
tvmonitor ap: 0.6923886096918628
mAP: 0.7689339018615006
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
paper:
- YOLOv3: An Incremental Improvement
- An Analysis of Scale Invariance in Object Detection - SNIP
- Scale-Aware Trident Networks for Object Detection
- Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
- Bag of Freebies for Training Object Detection Neural Networks
- Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
- MobileNetV2: Inverted Residuals and Linear Bottlenecks