-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
177 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file added
BIN
+98.5 KB
static/from-0-to-crypto-by-projects/episode-2-proof-demonstration/latex-reverse-type7.pdf
Binary file not shown.
154 changes: 154 additions & 0 deletions
154
static/from-0-to-crypto-by-projects/episode-2-proof-demonstration/latex-reverse-type7.tex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
\documentclass{article} | ||
\usepackage{amsmath} | ||
\usepackage{mathtools, nccmath} | ||
\usepackage{amssymb, amsthm, mathrsfs} | ||
\begin{document} | ||
|
||
According to the decompilation of the Ciso Vigenere hash algorithm, when the password length is less than 16 the idea behind Ciso Vigenere hash algorithm is: \\ | ||
Let p be the password that the user types. \\ | ||
Let hp be the hardcoded password in the code of Packet Tracer. \\ | ||
Let lp be the length of the user input password. \\ | ||
Let h be the hash value obtained from the custom algorithm. \\ | ||
So that: | ||
$$ | ||
\begin{flushleft} | ||
\begin{multline} | ||
\[ | ||
\forall h \forall lp \forall hp [(hp = (d, s, f, d, ;, k, f, o, A, ,, ., i, y, e, w, r, k, l, d, J, K, D, H, S, U, B, s, g, v, c, a, 6, 9, 8, 3, 4, n, c, x , v), \\ | ||
0 \textless lp \textless 16, \\ | ||
h_{0} = 0, \\ | ||
h_{1} = 8, \\ | ||
h = \Sigma_{i=2}^{lp} | ||
\begin{cases} | ||
((p_i \oplus hp_{8 + i}) \ggg 4) + 0x30, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xfffffff0 < 0xa0) \text{ and if } i \equiv 0 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \ggg 4) + 0x37, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xfffffff0 \geq 0xa0) \text{ and if } i \equiv 0 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \land 0xf) + 0x30, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xf < 0x0a) \text{ and if } i \equiv 1 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \land 0xf) + 0x37, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xf \geq 0x0a) \text{ and if } i \equiv 1 \pmod 2 | ||
\end{cases} \\ | ||
) \implies \nexists p[p = \mathbf{rev}(h)] \\ | ||
\] | ||
\end{flushleft} | ||
\end{multline} | ||
$$ | ||
|
||
So let's split each sub steps of the algorithm. In this wayt, we could start prooving that if $ P \implies Q $ and if $ Q \implies R $ then $ P \implies R $ | ||
|
||
So for any P so that: | ||
|
||
$$ | ||
\begin{flushleft} | ||
\begin{multline} | ||
\[ | ||
h = \Sigma_{i=2}^{lp} | ||
\begin{cases} | ||
(p_{i} \oplus hp_{i+8} \land 0xfffffff0 < 0xa0) \text{ if } i \equiv 0 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xfffffff0 \geq 0xa0) \text{ if } i \equiv 0 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xf < 0x0a) \text{ if } i \equiv 1 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xf \geq 0x0a) \text{ if } i \equiv 1 \pmod 2 | ||
\end{cases} \\ | ||
) \implies \nexists p[p = \mathbf{rev}(h)] \\ | ||
\] | ||
\end{flushleft} | ||
\end{multline} | ||
$$ | ||
|
||
|
||
So for any Q so that: | ||
|
||
$$ | ||
\begin{flushleft} | ||
\begin{multline} | ||
\[ | ||
h = \Sigma_{i=2}^{lp} | ||
\begin{cases} | ||
(p_{i} \oplus hp_{i+8} \land 0xfffffff0 < 0xa0), \text{ if } i \equiv 0 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xfffffff0 \geq 0xa0) \text{ if } i \equiv 0 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xf < 0x0a), \text{ if } i \equiv 1 \pmod 2 \\ | ||
(p_{i} \oplus hp_{i+8} \land 0xf \geq 0x0a), \text{ if } i \equiv 1 \pmod 2 | ||
\end{cases} \\ | ||
) \implies \forall p[p = \mathbf{rev}(h)] \\ | ||
\] | ||
\end{flushleft} | ||
\end{multline}\\ | ||
$$ | ||
|
||
|
||
Let's start by prooving | ||
|
||
$$ | ||
\begin{flushleft} | ||
\begin{multline} | ||
\[ | ||
\forall h \forall lp \forall hp [(hp = (d, s, f, d, ;, k, f, o, A, ,, ., i, y, e, w, r, k, l, d, J, K, D, H, S, U, B, s, g, v, c, a, 6, 9, 8, 3, 4, n, c, x , v), \\ | ||
0 \textless lp \textless 16, \\ | ||
h_{0} = 0, \\ | ||
h_{1} = 8, \\ | ||
h = \Sigma_{i=2}^{lp} | ||
\begin{cases} | ||
((p_i \oplus hp_{8 + i}) \ggg 4) + 0x30, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xfffffff0 < 0xa0) \text{ and if } i \equiv 0 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \ggg 4) + 0x37, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xfffffff0 \geq 0xa0) \text{ and if } i \equiv 0 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \land 0xf) + 0x30, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xf < 0x0a) \text{ and if } i \equiv 1 \pmod 2 \\ | ||
((p_i \oplus hp_{8 + i}) \land 0xf) + 0x37, & \text{if } (p_{i} \oplus hp_{i+8} \land 0xf \geq 0x0a) \text{ and if } i \equiv 1 \pmod 2 | ||
\end{cases} \\ | ||
) \implies \nexists p[p = \mathbf{rev}(h)] \\ | ||
\] | ||
\end{flushleft} | ||
\end{multline} | ||
$$ | ||
|
||
## I/ exclusive or | ||
|
||
According to the [Karnaught table](https://fr.wikipedia.org/wiki/Table_de_v%C3%A9rit%C3%A9#Disjonction_exclusive), $ \forall x [(x \xor x) \implies (x = 0)] $. | ||
|
||
Then as $ xlat \xor xlat = 0 $, and as $ p \xor 0 = p $, we know that the original password $p = xlat \xor h $. | ||
|
||
## II/ substraction to reverse the addition | ||
|
||
$\forall x [(x = y + z) \implies (y = e \minus z)]$ | ||
|
||
## III/ truncating 4 first and 4 last bits | ||
|
||
|
||
Then we have proven that: | ||
|
||
$hp = (d, s, f, d, ;, k, f, o, A, ,, ., i, y, e, w, r, k, l, d, J, K, D, H, S, U, B, s, g, v, c, a, 6, 9, 8, 3, 4, n, c, x , v) \implies (\forall x \in hp[0 \geq x 0 \geq 256 \implies x \in hp]) $ | ||
|
||
then: | ||
|
||
$$ | ||
\begin{flushleft} | ||
\begin{multline} | ||
Let p be the password that the user types. \\ | ||
Let hp be the hardcoded password in the code of Packet Tracer. \\ | ||
Let lp be the length of the user input password. \\ | ||
Let h be the hash value obtained from the custom algorithm. \\ | ||
So that: | ||
\[ | ||
\forall h \forall lp \forall hp [(hp \in N \land 0 \geq hp, \\ | ||
0 \textless lp \textless 16, \\ | ||
h_{0} = 0, \\ | ||
h_{1} = 8, \\ | ||
h = \Sigma_{i=2}^{lp} | ||
\begin{cases} | ||
(((p_{i} \oplus hp_{i+8}) \lll 4) - 0x30), & \text{if } p_i < 0xa0 \text{ and if } i \equiv 0 \pmod 2 \\ | ||
(((p_{i} \oplus hp_{i+8}) \lll 4) - 0x37), & \text{if } p_i \geq 0x0a0 \text{ and if } i \equiv 0 \pmod 2 \\ | ||
(((p_{i} \oplus hp_{i+8}) \land 0xffffffff0) - 0x30), & \text{if } p_i < 0x0a \text{ and if } i \equiv 1 \pmod 2 \\ | ||
(((p_{i} \oplus hp_{i+8}) \land 0xffffffff0) - 0x37), & \text{if } p_i \geq 0x0a \text{ and if } i \equiv 1 \pmod 2 | ||
\end{cases} \\ | ||
) \implies \forall p[p = \mathbf{rev}(h)] \\ | ||
\] | ||
\end{flushleft} | ||
\end{multline}\\ | ||
$$ | ||
\end{document} |
File renamed without changes.