-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PiperOrigin-RevId: 568780473
- Loading branch information
The human_scene_transformer Authors
committed
Sep 28, 2023
1 parent
1ce78e5
commit aa7cc31
Showing
13 changed files
with
324 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
# Copyright 2023 The human_scene_transformer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Preprocesses the raw test split of JRDB. | ||
""" | ||
|
||
import os | ||
|
||
from human_scene_transformer.data import utils | ||
import numpy as np | ||
import pandas as pd | ||
import tensorflow as tf | ||
import tqdm | ||
|
||
INPUT_PATH = '<dataset_path>' | ||
OUTPUT_PATH = '<output_path>' | ||
|
||
POINTCLOUD = True | ||
AGENT_KEYPOINTS = True | ||
FROM_DETECTIONS = True | ||
|
||
|
||
def list_test_scenes(input_path): | ||
scenes = os.listdir(os.path.join(input_path, 'images', 'image_0')) | ||
scenes.sort() | ||
return scenes | ||
|
||
|
||
def get_agents_features_df_with_box( | ||
input_path, scene_id, max_distance_to_robot=10.0 | ||
): | ||
"""Returns agents features with bounding box from raw leaderboard data.""" | ||
jrdb_header = [ | ||
'frame', | ||
'track id', | ||
'type', | ||
'truncated', | ||
'occluded', | ||
'alpha', | ||
'bb_left', | ||
'bb_top', | ||
'bb_width', | ||
'bb_height', | ||
'x', | ||
'y', | ||
'z', | ||
'height', | ||
'width', | ||
'length', | ||
'rotation_y', | ||
'score', | ||
] | ||
scene_data_file = utils.get_file_handle( | ||
os.path.join( | ||
input_path, 'labels', 'raw_leaderboard', f'{scene_id:04}' + '.txt' | ||
) | ||
) | ||
df = pd.read_csv(scene_data_file, sep=' ', names=jrdb_header) | ||
|
||
def camera_to_lower_velodyne(p): | ||
return np.stack( | ||
[p[..., 2], -p[..., 0], -p[..., 1] + (0.742092 - 0.606982)], axis=-1 | ||
) | ||
|
||
df = df[df['score'] >= 0.01] | ||
|
||
df['p'] = df[['x', 'y', 'z']].apply( | ||
lambda s: camera_to_lower_velodyne(s.to_numpy()), axis=1 | ||
) | ||
df['distance'] = df['p'].apply(lambda s: np.linalg.norm(s, axis=-1)) | ||
df['l'] = df['height'] | ||
df['h'] = df['width'] | ||
df['w'] = df['length'] | ||
df['yaw'] = df['rotation_y'] | ||
|
||
df['id'] = df['track id'].apply(lambda s: f'pedestrian:{s}') | ||
df['timestep'] = df['frame'] | ||
|
||
df = df.set_index(['timestep', 'id']) | ||
|
||
df = df[df['distance'] <= max_distance_to_robot] | ||
|
||
return df[['p', 'yaw', 'l', 'h', 'w']] | ||
|
||
|
||
def jrdb_preprocess_test(input_path, output_path): | ||
scenes = list_test_scenes(os.path.join(input_path, 'test_dataset')) | ||
subsample = 1 | ||
for scene in tqdm.tqdm(scenes): | ||
scene_save_name = scene + '_test' | ||
agents_df = get_agents_features_df_with_box( | ||
os.path.join(input_path, 'test_dataset'), | ||
scenes.index(scene), | ||
max_distance_to_robot=15.0, | ||
) | ||
|
||
robot_odom = utils.get_robot( | ||
os.path.join(input_path, 'processed', 'odometry_test'), scene | ||
) | ||
|
||
if AGENT_KEYPOINTS: | ||
keypoints = utils.get_agents_keypoints( | ||
os.path.join( | ||
input_path, 'processed', 'labels', 'labels_3d_keypoints_test' | ||
), | ||
scene, | ||
) | ||
keypoints_df = pd.DataFrame.from_dict( | ||
keypoints, orient='index' | ||
).rename_axis(['timestep', 'id']) # pytype: disable=missing-parameter # pandas-drop-duplicates-overloads | ||
|
||
agents_df = agents_df.join(keypoints_df) | ||
agents_df.keypoints.fillna( | ||
dict( | ||
zip( | ||
agents_df.index[agents_df['keypoints'].isnull()], | ||
[np.ones((33, 3)) * np.nan] | ||
* len( | ||
agents_df.loc[ | ||
agents_df['keypoints'].isnull(), 'keypoints' | ||
] | ||
), | ||
) | ||
), | ||
inplace=True, | ||
) | ||
|
||
robot_df = pd.DataFrame.from_dict(robot_odom, orient='index').rename_axis( # pytype: disable=missing-parameter # pandas-drop-duplicates-overloads | ||
['timestep'] | ||
) | ||
# Remove extra data odometry datapoints | ||
robot_df = robot_df.iloc[agents_df.index.levels[0]] | ||
|
||
assert (agents_df.index.levels[0] == robot_df.index).all() | ||
|
||
# Subsample | ||
assert len(agents_df.index.levels[0]) == agents_df.index.levels[0].max() + 1 | ||
agents_df_subsampled_index = agents_df.unstack('id').iloc[::subsample].index | ||
agents_df = ( | ||
agents_df.unstack('id') | ||
.iloc[::subsample] | ||
.reset_index(drop=True) | ||
.stack('id', dropna=True) | ||
) | ||
|
||
agents_in_odometry_df = utils.agents_to_odometry_frame( | ||
agents_df, robot_df.iloc[::subsample].reset_index(drop=True) | ||
) | ||
|
||
agents_pos_ragged_tensor = utils.agents_pos_to_ragged_tensor( | ||
agents_in_odometry_df | ||
) | ||
agents_yaw_ragged_tensor = utils.agents_yaw_to_ragged_tensor( | ||
agents_in_odometry_df | ||
) | ||
assert ( | ||
agents_pos_ragged_tensor.shape[0] == agents_yaw_ragged_tensor.shape[0] | ||
) | ||
|
||
tf.data.Dataset.from_tensors(agents_pos_ragged_tensor).save( | ||
os.path.join(output_path, scene_save_name, 'agents', 'position') | ||
) | ||
tf.data.Dataset.from_tensors(agents_yaw_ragged_tensor).save( | ||
os.path.join(output_path, scene_save_name, 'agents', 'orientation') | ||
) | ||
|
||
if AGENT_KEYPOINTS: | ||
agents_keypoints_ragged_tensor = utils.agents_keypoints_to_ragged_tensor( | ||
agents_in_odometry_df | ||
) | ||
tf.data.Dataset.from_tensors(agents_keypoints_ragged_tensor).save( | ||
os.path.join(output_path, scene_save_name, 'agents', 'keypoints') | ||
) | ||
|
||
robot_in_odometry_df = utils.robot_to_odometry_frame(robot_df) | ||
robot_pos = tf.convert_to_tensor( | ||
np.stack(robot_in_odometry_df.iloc[::subsample]['p'].values).astype( | ||
np.float32 | ||
) | ||
) | ||
robot_orientation = tf.convert_to_tensor( | ||
np.stack(robot_in_odometry_df.iloc[::subsample]['yaw'].values).astype( | ||
np.float32 | ||
) | ||
)[..., tf.newaxis] | ||
|
||
tf.data.Dataset.from_tensors(robot_pos).save( | ||
os.path.join(output_path, scene_save_name, 'robot', 'position') | ||
) | ||
tf.data.Dataset.from_tensors(robot_orientation).save( | ||
os.path.join(output_path, scene_save_name, 'robot', 'orientation') | ||
) | ||
|
||
if POINTCLOUD: | ||
scene_pointcloud_dict = utils.get_scene_poinclouds( | ||
os.path.join(input_path, 'test_dataset'), scene, subsample=subsample | ||
) | ||
# Remove extra timesteps | ||
scene_pointcloud_dict = { | ||
ts: scene_pointcloud_dict[ts] for ts in agents_df_subsampled_index | ||
} | ||
|
||
scene_pc_odometry = utils.pc_to_odometry_frame( | ||
scene_pointcloud_dict, robot_df | ||
) | ||
|
||
filtered_pc = utils.filter_agents_and_ground_from_point_cloud( | ||
agents_in_odometry_df, scene_pc_odometry, robot_in_odometry_df | ||
) | ||
|
||
scene_pc_ragged_tensor = tf.ragged.stack(filtered_pc) | ||
|
||
assert ( | ||
agents_pos_ragged_tensor.bounding_shape()[1] | ||
== scene_pc_ragged_tensor.shape[0] | ||
) | ||
|
||
tf.data.Dataset.from_tensors(scene_pc_ragged_tensor).save( | ||
os.path.join(output_path, scene_save_name, 'scene', 'pc'), | ||
compression='GZIP', | ||
) | ||
|
||
if __name__ == '__main__': | ||
jrdb_preprocess_test(INPUT_PATH, OUTPUT_PATH) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.