Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support to write multidimensional string arrays #1173

Merged
merged 14 commits into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
- Added support to append to a dataset of references for HDMF-Zarr. @mavaylon1 [#1157](https://github.com/hdmf-dev/hdmf/pull/1157)
- Adjusted stacklevel of warnings to point to user code when possible. @rly [#1166](https://github.com/hdmf-dev/hdmf/pull/1166)
- Improved "already exists" error message when adding a container to a `MultiContainerInterface`. @rly [#1165](https://github.com/hdmf-dev/hdmf/pull/1165)
- Added support to write multidimensional string arrays. @stephprince [#1173](https://github.com/hdmf-dev/hdmf/pull/1173)

## HDMF 3.14.3 (July 29, 2024)

Expand Down
2 changes: 1 addition & 1 deletion src/hdmf/backends/hdf5/h5tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -1469,7 +1469,7 @@ def __list_fill__(cls, parent, name, data, options=None):
data_shape = io_settings.pop('shape')
elif hasattr(data, 'shape'):
data_shape = data.shape
elif isinstance(dtype, np.dtype):
elif isinstance(dtype, np.dtype) and len(dtype) > 1: # check if compound dtype
data_shape = (len(data),)
else:
data_shape = get_data_shape(data)
Expand Down
10 changes: 8 additions & 2 deletions src/hdmf/build/objectmapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -598,11 +598,17 @@ def __get_data_type(cls, spec):

def __convert_string(self, value, spec):
"""Convert string types to the specified dtype."""
def __apply_string_type(value, string_type):
if isinstance(value, (list, tuple, np.ndarray, DataIO)):
return [__apply_string_type(item, string_type) for item in value]
else:
return string_type(value)

ret = value
if isinstance(spec, AttributeSpec):
if 'text' in spec.dtype:
if spec.shape is not None or spec.dims is not None:
ret = list(map(str, value))
ret = __apply_string_type(value, str)
else:
ret = str(value)
elif isinstance(spec, DatasetSpec):
Expand All @@ -618,7 +624,7 @@ def string_type(x):
return x.isoformat() # method works for both date and datetime
if string_type is not None:
if spec.shape is not None or spec.dims is not None:
ret = list(map(string_type, value))
ret = __apply_string_type(value, string_type)
else:
ret = string_type(value)
# copy over any I/O parameters if they were specified
Expand Down
7 changes: 4 additions & 3 deletions tests/unit/build_tests/test_classgenerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,10 +180,11 @@ def test_dynamic_container_creation(self):
baz_spec = GroupSpec('A test extension with no Container class',
data_type_def='Baz', data_type_inc=self.bar_spec,
attributes=[AttributeSpec('attr3', 'a float attribute', 'float'),
AttributeSpec('attr4', 'another float attribute', 'float')])
AttributeSpec('attr4', 'another float attribute', 'float'),
AttributeSpec('attr_array', 'an array attribute', 'text', shape=(None,)),])
self.spec_catalog.register_spec(baz_spec, 'extension.yaml')
cls = self.type_map.get_dt_container_cls('Baz', CORE_NAMESPACE)
expected_args = {'name', 'data', 'attr1', 'attr2', 'attr3', 'attr4', 'skip_post_init'}
expected_args = {'name', 'data', 'attr1', 'attr2', 'attr3', 'attr4', 'attr_array', 'skip_post_init'}
received_args = set()

for x in get_docval(cls.__init__):
Expand Down Expand Up @@ -211,7 +212,7 @@ def test_dynamic_container_creation_defaults(self):
AttributeSpec('attr4', 'another float attribute', 'float')])
self.spec_catalog.register_spec(baz_spec, 'extension.yaml')
cls = self.type_map.get_dt_container_cls('Baz', CORE_NAMESPACE)
expected_args = {'name', 'data', 'attr1', 'attr2', 'attr3', 'attr4', 'foo', 'skip_post_init'}
expected_args = {'name', 'data', 'attr1', 'attr2', 'attr3', 'attr4', 'attr_array', 'foo', 'skip_post_init'}
received_args = set(map(lambda x: x['name'], get_docval(cls.__init__)))
self.assertSetEqual(expected_args, received_args)
self.assertEqual(cls.__name__, 'Baz')
Expand Down
119 changes: 113 additions & 6 deletions tests/unit/build_tests/test_io_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
from hdmf.testing import TestCase
from abc import ABCMeta, abstractmethod
import unittest
import numpy as np

from tests.unit.helpers.utils import CORE_NAMESPACE, create_test_type_map

Expand All @@ -20,24 +21,27 @@ class Bar(Container):
{'name': 'attr1', 'type': str, 'doc': 'an attribute'},
{'name': 'attr2', 'type': int, 'doc': 'another attribute'},
{'name': 'attr3', 'type': float, 'doc': 'a third attribute', 'default': 3.14},
{'name': 'attr_array', 'type': 'array_data', 'doc': 'another attribute', 'default': (1, 2, 3)},
{'name': 'foo', 'type': 'Foo', 'doc': 'a group', 'default': None})
def __init__(self, **kwargs):
name, data, attr1, attr2, attr3, foo = getargs('name', 'data', 'attr1', 'attr2', 'attr3', 'foo', kwargs)
name, data, attr1, attr2, attr3, attr_array, foo = getargs('name', 'data', 'attr1', 'attr2', 'attr3',
'attr_array', 'foo', kwargs)
super().__init__(name=name)
self.__data = data
self.__attr1 = attr1
self.__attr2 = attr2
self.__attr3 = attr3
self.__attr_array = attr_array
self.__foo = foo
if self.__foo is not None and self.__foo.parent is None:
self.__foo.parent = self

def __eq__(self, other):
attrs = ('name', 'data', 'attr1', 'attr2', 'attr3', 'foo')
attrs = ('name', 'data', 'attr1', 'attr2', 'attr3', 'attr_array', 'foo')
return all(getattr(self, a) == getattr(other, a) for a in attrs)

def __str__(self):
attrs = ('name', 'data', 'attr1', 'attr2', 'attr3', 'foo')
attrs = ('name', 'data', 'attr1', 'attr2', 'attr3', 'attr_array', 'foo')
return ','.join('%s=%s' % (a, getattr(self, a)) for a in attrs)

@property
Expand All @@ -60,6 +64,10 @@ def attr2(self):
def attr3(self):
return self.__attr3

@property
def attr_array(self):
return self.__attr_array

@property
def foo(self):
return self.__foo
Expand Down Expand Up @@ -333,12 +341,15 @@ def test_build_1d(self):
datasets=[DatasetSpec('an example dataset', 'text', name='data', shape=(None,),
attributes=[AttributeSpec(
'attr2', 'an example integer attribute', 'int')])],
attributes=[AttributeSpec('attr1', 'an example string attribute', 'text')])
attributes=[AttributeSpec('attr1', 'an example string attribute', 'text'),
AttributeSpec('attr_array', 'an example array attribute', 'text',
shape=(None,))])
type_map = self.customSetUp(bar_spec)
type_map.register_map(Bar, BarMapper)
bar_inst = Bar('my_bar', ['a', 'b', 'c', 'd'], 'value1', 10)
bar_inst = Bar('my_bar', ['a', 'b', 'c', 'd'], 'value1', 10, attr_array=['a', 'b', 'c', 'd'])
builder = type_map.build(bar_inst)
self.assertEqual(builder.get('data').data, ['a', 'b', 'c', 'd'])
np.testing.assert_array_equal(builder.get('data').data, np.array(['a', 'b', 'c', 'd']))
np.testing.assert_array_equal(builder.get('attr_array'), np.array(['a', 'b', 'c', 'd']))

def test_build_scalar(self):
bar_spec = GroupSpec('A test group specification with a data type',
Expand All @@ -353,6 +364,102 @@ def test_build_scalar(self):
builder = type_map.build(bar_inst)
self.assertEqual(builder.get('data').data, "['a', 'b', 'c', 'd']")

def test_build_2d_lol(self):
bar_spec = GroupSpec(
doc='A test group specification with a data type',
data_type_def='Bar',
datasets=[
DatasetSpec(
doc='an example dataset',
dtype='text',
name='data',
shape=(None, None),
attributes=[AttributeSpec(name='attr2', doc='an example integer attribute', dtype='int')],
)
],
attributes=[AttributeSpec(name='attr_array', doc='an example array attribute', dtype='text',
shape=(None, None))],
)
type_map = self.customSetUp(bar_spec)
type_map.register_map(Bar, BarMapper)
str_lol_2d = [['aa', 'bb'], ['cc', 'dd']]
bar_inst = Bar('my_bar', str_lol_2d, 'value1', 10, attr_array=str_lol_2d)
builder = type_map.build(bar_inst)
self.assertEqual(builder.get('data').data, str_lol_2d)
self.assertEqual(builder.get('attr_array'), str_lol_2d)

def test_build_2d_ndarray(self):
bar_spec = GroupSpec(
doc='A test group specification with a data type',
data_type_def='Bar',
datasets=[
DatasetSpec(
doc='an example dataset',
dtype='text',
name='data',
shape=(None, None),
attributes=[AttributeSpec(name='attr2', doc='an example integer attribute', dtype='int')],
)
],
attributes=[AttributeSpec(name='attr_array', doc='an example array attribute', dtype='text',
shape=(None, None))],
)
type_map = self.customSetUp(bar_spec)
type_map.register_map(Bar, BarMapper)
str_array_2d = np.array([['aa', 'bb'], ['cc', 'dd']])
bar_inst = Bar('my_bar', str_array_2d, 'value1', 10, attr_array=str_array_2d)
builder = type_map.build(bar_inst)
np.testing.assert_array_equal(builder.get('data').data, str_array_2d)
np.testing.assert_array_equal(builder.get('attr_array'), str_array_2d)

def test_build_3d_lol(self):
bar_spec = GroupSpec(
doc='A test group specification with a data type',
data_type_def='Bar',
datasets=[
DatasetSpec(
doc='an example dataset',
dtype='text',
name='data',
shape=(None, None, None),
attributes=[AttributeSpec(name='attr2', doc='an example integer attribute', dtype='int')],
)
],
attributes=[AttributeSpec(name='attr_array', doc='an example array attribute', dtype='text',
shape=(None, None, None))],
)
type_map = self.customSetUp(bar_spec)
type_map.register_map(Bar, BarMapper)
str_lol_3d = [[['aa', 'bb'], ['cc', 'dd']], [['ee', 'ff'], ['gg', 'hh']]]
bar_inst = Bar('my_bar', str_lol_3d, 'value1', 10, attr_array=str_lol_3d)
builder = type_map.build(bar_inst)
self.assertEqual(builder.get('data').data, str_lol_3d)
self.assertEqual(builder.get('attr_array'), str_lol_3d)

def test_build_3d_ndarray(self):
bar_spec = GroupSpec(
doc='A test group specification with a data type',
data_type_def='Bar',
datasets=[
DatasetSpec(
doc='an example dataset',
dtype='text',
name='data',
shape=(None, None, None),
attributes=[AttributeSpec(name='attr2', doc='an example integer attribute', dtype='int')],
)
],
attributes=[AttributeSpec(name='attr_array', doc='an example array attribute', dtype='text',
shape=(None, None, None))],
)
type_map = self.customSetUp(bar_spec)
type_map.register_map(Bar, BarMapper)
str_array_3d = np.array([[['aa', 'bb'], ['cc', 'dd']], [['ee', 'ff'], ['gg', 'hh']]])
bar_inst = Bar('my_bar', str_array_3d, 'value1', 10, attr_array=str_array_3d)
builder = type_map.build(bar_inst)
np.testing.assert_array_equal(builder.get('data').data, str_array_3d)
np.testing.assert_array_equal(builder.get('attr_array'), str_array_3d)

def test_build_dataio(self):
bar_spec = GroupSpec('A test group specification with a data type',
data_type_def='Bar',
Expand Down
27 changes: 26 additions & 1 deletion tests/unit/test_io_hdf5_h5tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
from hdmf.data_utils import DataChunkIterator, GenericDataChunkIterator, InvalidDataIOError
from hdmf.spec.catalog import SpecCatalog
from hdmf.spec.namespace import NamespaceCatalog, SpecNamespace
from hdmf.spec.spec import GroupSpec
from hdmf.spec.spec import GroupSpec, DtypeSpec
from hdmf.testing import TestCase, remove_test_file
from hdmf.common.resources import HERD
from hdmf.term_set import TermSet, TermSetWrapper
Expand Down Expand Up @@ -164,6 +164,31 @@ def test_write_dataset_list(self):
dset = self.f['test_dataset']
self.assertTrue(np.all(dset[:] == a))

def test_write_dataset_lol_strings(self):
a = [['aa', 'bb'], ['cc', 'dd']]
self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={}))
dset = self.f['test_dataset']
decoded_dset = [[item.decode('utf-8') if isinstance(item, bytes) else item for item in sublist]
for sublist in dset[:]]
self.assertTrue(decoded_dset == a)

def test_write_dataset_list_compound_datatype(self):
rly marked this conversation as resolved.
Show resolved Hide resolved
a = np.array([(1, 2, 0.5), (3, 4, 0.5)], dtype=[('x', 'int'), ('y', 'int'), ('z', 'float')])
dset_builder = DatasetBuilder(
name='test_dataset',
data=a.tolist(),
attributes={},
dtype=[
DtypeSpec('x', doc='x', dtype='int'),
DtypeSpec('y', doc='y', dtype='int'),
DtypeSpec('z', doc='z', dtype='float'),
],
)
self.io.write_dataset(self.f, dset_builder)
dset = self.f['test_dataset']
for field in a.dtype.names:
self.assertTrue(np.all(dset[field][:] == a[field]))

def test_write_dataset_list_compress_gzip(self):
a = H5DataIO(np.arange(30).reshape(5, 2, 3),
compression='gzip',
Expand Down
Loading