Skip to content

hexiao0275/LCMA_RGBT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

LCMA_RGBT

Efficient Layer-Wise Cross-Modality Calibration and Aggregation for RGB-Infrared Object Detection

Environment

I have tested the following versions of OS and softwares:

  • OS:Ubuntu 18.04
  • CUDA: 11.3

Install

CUDA Driver Version ≥ CUDA Toolkit Version(runtime version) = torch.version.cuda

a. Create a conda virtual environment and activate it, e.g.,

conda remove -n mmdetection --all
conda activate mmdet
conda install pytorch==1.10.1 cudatoolkit==11.3.1 torchvision==0.11.2 -c pytorch
pip install -r requirements.txt
cd utils/nms_rotated
python setup.py develop  #or "pip install -v -e ."

train

python train.py

Install DOTA_devkit.

(Custom Install, it's just a tool to split the high resolution image and evaluation the obb)

cd yolov5_obb/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace

test

python valtest.py --save-json --name 'obb_demo6'
python tools/TestJson2VocClassTxt.py --json_path 'runs/val/obb_demo/best_obb_predictions.json' --save_path 'runs/val/obb_demo/obb_predictions_Txt'
python DOTA_devkit-master/dota_evaluation_task1.py 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published