-
You can find the dataset here on Kaggle.
-
1,000 images of the dataset is already in the
animefaces
folder, to use the whole dataset extract it inside this folder
The directory structure for this project:
├───input
│ ├───animefaces
│ ├───box_filter_blurred
│ ├───gaussian_blurred
│ |───greyscaled
│ └───motion_blurred
├───outputs
│ ├───box_filter_deblurred
│ ├───gaussian_deblurred
│ └───motion_deblurred
└───src
In src
example using box blur
grayscale.py
box_filter_blur.py
train_box_filter.py
The outputs are sorted in this order for each section (left to right, downwards):
- Original image
- Grayscaled image
- Blurred image
- Model 1 deblurred image
- Model 2 deblurred image
- Model 3 deblurred image
More on our website for this project here
- C. Dong, C. C. Loy, K. He and X. Tang, "Image Super-Resolution Using Deep Convolutional Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295-307, 1 Feb. 2016, doi: 10.1109/TPAMI.2015.2439281.
- Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce. Learning a convolutional neural network for non-uniform motion blur removal. CVPR 2015 - IEEE Conference on Computer Vision and Pattern Recognition 2015, Jun 2015, Boston, United States. IEEE, 2015,.
- Ledig, Christian & Theis, Lucas & Huszar, Ferenc & Caballero, Jose & Cunningham, Andrew & Acosta, Alejandro & Aitken, Andrew & Tejani, Alykhan & Totz, Johannes & Wang, Zehan & Shi, Wenzhe. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 105-114. 10.1109/CVPR.2017.19.
- Albluwi, Fatma & Krylov, Vladimir A. & Dahyot, Rozenn. (2018). Image Deblurring and Super-Resolution Using Deep Convolutional Neural Networks. 1-6. 10.1109/MLSP.2018.8516983.
- Kupyn, Orest & Budzan, Volodymyr & Mykhailych, Mykola & Mishkin, Dmytro & Matas, Jiri. (2017). DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks.