Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add bf16 autocast #126

Merged
merged 6 commits into from
May 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions sae_lens/training/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ class LanguageModelSAERunnerConfig:
seed: int = 42
dtype: str | torch.dtype = "float32" # type: ignore #
prepend_bos: bool = True
autocast: bool = False # autocast to autocast_dtype during training

# Training Parameters

Expand Down
1 change: 1 addition & 0 deletions sae_lens/training/lm_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@ def language_model_sae_runner(cfg: LanguageModelSAERunnerConfig):
use_wandb=cfg.log_to_wandb,
wandb_log_frequency=cfg.wandb_log_frequency,
eval_every_n_wandb_logs=cfg.eval_every_n_wandb_logs,
autocast=cfg.autocast,
).sae_group

if cfg.log_to_wandb:
Expand Down
57 changes: 40 additions & 17 deletions sae_lens/training/train_sae_on_language_model.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import contextlib
import os
import pickle
import random
Expand Down Expand Up @@ -186,6 +187,7 @@ def train_sae_on_language_model(
use_wandb: bool = False,
wandb_log_frequency: int = 50,
eval_every_n_wandb_logs: int = 100,
autocast: bool = False,
) -> SparseAutoencoderDictionary:
"""
@deprecated Use `train_sae_group_on_language_model` instead. This method is kept for backward compatibility.
Expand All @@ -200,6 +202,7 @@ def train_sae_on_language_model(
use_wandb=use_wandb,
wandb_log_frequency=wandb_log_frequency,
eval_every_n_wandb_logs=eval_every_n_wandb_logs,
autocast=autocast,
).sae_group


Expand All @@ -219,6 +222,7 @@ def train_sae_group_on_language_model(
use_wandb: bool = False,
wandb_log_frequency: int = 50,
eval_every_n_wandb_logs: int = 100,
autocast: bool = False,
) -> TrainSAEGroupOutput:
total_training_tokens = get_total_training_tokens(sae_group=sae_group)
_update_sae_lens_training_version(sae_group)
Expand Down Expand Up @@ -289,6 +293,7 @@ def interrupt_callback(sig_num: Any, stack_frame: Any):
all_layers=all_layers,
batch_size=batch_size,
wandb_suffix=wandb_suffix,
autocast=autocast,
)
mse_losses.append(step_output.mse_loss)
l1_losses.append(step_output.l1_loss)
Expand Down Expand Up @@ -539,6 +544,7 @@ def _train_step(
all_layers: list[int],
batch_size: int,
wandb_suffix: str,
autocast: bool = True,
) -> TrainStepOutput:
assert sparse_autoencoder.cfg.d_sae is not None # keep pyright happy
layer_id = all_layers.index(sparse_autoencoder.hook_point_layer)
Expand Down Expand Up @@ -579,18 +585,33 @@ def _train_step(
ctx.n_forward_passes_since_fired > sparse_autoencoder.cfg.dead_feature_window
).bool()

# Setup autocast if using
scaler = torch.cuda.amp.GradScaler(enabled=autocast)
if autocast:
autocast_if_enabled = torch.autocast(
device_type="cuda",
dtype=torch.bfloat16,
enabled=autocast,
)
else:
autocast_if_enabled = contextlib.nullcontext()

# Forward and Backward Passes
(
sae_out,
feature_acts,
loss,
mse_loss,
l1_loss,
ghost_grad_loss,
) = sparse_autoencoder(
sae_in,
ghost_grad_neuron_mask,
)
# for documentation on autocasting see:
# https://pytorch.org/tutorials/recipes/recipes/amp_recipe.html
with autocast_if_enabled:
(
sae_out,
feature_acts,
loss,
mse_loss,
l1_loss,
ghost_grad_loss,
) = sparse_autoencoder(
sae_in,
ghost_grad_neuron_mask,
)

did_fire = (feature_acts > 0).float().sum(-2) > 0
ctx.n_forward_passes_since_fired += 1
ctx.n_forward_passes_since_fired[did_fire] = 0
Expand All @@ -600,17 +621,19 @@ def _train_step(
ctx.act_freq_scores += (feature_acts.abs() > 0).float().sum(0)
ctx.n_frac_active_tokens += batch_size

ctx.optimizer.zero_grad()
loss.backward()

# clip grad norm
# TODO: Work out if this should be in config / how to test it.
# Scaler will rescale gradients if autocast is enabled
scaler.scale(loss).backward() # loss.backward() if not autocasting
scaler.unscale_(ctx.optimizer) # needed to clip correctly
# TODO: Work out if grad norm clipping should be in config / how to test it.
torch.nn.utils.clip_grad_norm_(sparse_autoencoder.parameters(), 1.0)
scaler.step(ctx.optimizer) # just ctx.optimizer.step() if not autocasting
scaler.update()

if sparse_autoencoder.normalize_sae_decoder:
sparse_autoencoder.remove_gradient_parallel_to_decoder_directions()

ctx.optimizer.step()
ctx.optimizer.zero_grad()

ctx.lr_scheduler.step()
ctx.l1_scheduler.step()

Expand Down