Skip to content

Releases: jolibrain/joliGEN

joliGEN v3.0.0

02 Feb 08:09
Compare
Choose a tag to compare

This release adds Consistency Models and REST API for GAN and diffusion models inference.

Features

  • api inference for gan and diffusion (6fd43d8)
  • inference server option returns base64 image (5bc8f44)
  • ml: consistency models as diffusion models for inpainting, with conditioning (de9d725)
  • scripts: canny thresholds grid plots (6d94ffa)
  • specialized helpers for each model (f361414)

Bug Fixes

  • correct help for image generation scripts (76ce6b4)
  • enable model export during training (79525b8)
  • not force reloading dinov2 models (800967d)
  • ref_in option (2927574)
  • resize image to test base64 api diffusion (2708a6f)

Docker images:

joliGEN 2.0.0

13 Nov 14:30
Compare
Choose a tag to compare

Features

  • ml: dinov2 discriminator with registers (7fcf790)
  • ml: DinoV2 feature-based projected discriminator (c67ffa8)
  • ml: SigLIP based projected discriminators (5e10a86)
  • optimization eps value control (0556987)
  • pix2pix task for palette (7e47139)
  • scripts: adding a video generation script for gans (85d1922)

Bug Fixes

  • amp for discriminators (811ba3d)
  • APA augmentation on multiple discriminators (becb3eb)
  • docker release script (f1c56de)
  • end of training metrics computation (e1f213c)
  • init_metrics directory and metrics on CPU (0b77943)
  • load size for rectangular images, resize ref image for inference (965e1bf)
  • ml: inference for diffusion with reference image (df8c504)

Docker images:

v1.0.0

06 Oct 10:20
Compare
Choose a tag to compare

joliGEN: Generative AI Toolset (Changelog)

1.0.0 (2023-10-06)

Docker

Features

  • add a server endpoint to delete files (30b2143)
  • add choices for all options (ed43b82)
  • add ddim inference (0196134)
  • add DDPM tutorial on the VITON-HD dataset (c932d73)
  • add FastAPI server to run training (f517462)
  • add lambda for semantic losses (aab53fe)
  • add LPIPS metric (f1e0526)
  • add miou compute to tests (c0033ef)
  • add new metrics (f3c84cd)
  • add palette model (b7db294)
  • add psnr metric (7135458)
  • add sampling options to test (a2958dc)
  • add SRC and hDCE losses (ddfcc97)
  • add test for doc generation (41526f8)
  • add test on cycle_gan_semantic_mask (3eeff76)
  • add tests for reference image dataloaders (ae6405e)
  • added D noise to CUT with semantics (31aa4a3)
  • added optimizers and options (505cac2)
  • allow control of projected discriminator interpolation (dbffec5)
  • allow ViT custom resolution at D projector init (82e6e83)
  • api: display current commit at startup (6f90be8)
  • aug: affine transforms for semantics (170b0f8)
  • aug: configurable online mask delta augmentation by x and y axis (dfa6459)
  • aug: select bbox category through the path sanitization functionality (a8d3f48)
  • auto download segformer weights (083cc5e)
  • backward while computing MSE criterion loss (1b87906)
  • bbox as sam prompt (a39c5bd)
  • bbox prompt for sam (1fa9cae)
  • bilinear interpolation of attention heads when dimension does not match, useful for segformer G (eed9494)
  • bw model export (8e43efa)
  • check code format when PR (eeb56cb)
  • choices for canny random thresholds (9573fc1)
  • class weights for semantic segmentation network with cross entropy (4274f1e)
  • classifier training on domain B (fa343c0)
  • commandline saving (6eb503e)
  • commandline script for joligan server calls (48ae23b)
  • compute_feats for unet G (9f1109e)
  • conditioning for palette (b9854ee)
  • config json for client script (174dce9)
  • context for D (b0d3c7b)
  • contrastive classifier noise (7193e0e)
  • contrastive loss for D (deb2ec4)
  • cut_semantic model (b20a943)
  • D accuracy (26ead91)
  • data: random noise in images for object insertion (42cf13d)
  • DDP (68f24da)
  • deceiving D for GAN training (2e2113f)
  • depth model as projector (10ffc28)
  • depth prediction and depth discriminator (01bc62b)
  • diff augment (054509c)
  • diffusion inference with old and new models (9c4c5a9)
  • display augmented images (2126253)
  • display test images (a1de083)
  • doc options auto update (1b08f92)
  • doc: add JSON config examples (5332213)
  • doc: basic server REST API (a757d17)
  • doc: datasets (dfe2343)
  • doc: DDPM conditioning training and inference examples (e694a29)
  • doc: models (be1fe34)
  • doc: refactored README with links to documentation (b5bf121)
  • doc: reference image conditioning (70aeb32)
  • doc: remove overview (2360527)
  • doc: server, client, docker (68a5b96)
  • doc: tips (3fea9ca)
  • doc: training (a4b720d)
  • doc: update inference models and examples (3c43a7b)
  • doc: updated FAQ (88b417c)
  • doc: updated model export (e692f78)
  • edge detection techniques (78202ea)
  • export for unet_mha (b4c3cfd)
  • extract bbox from img (fb64ef0)
  • first recut model (aaa4069)
  • first test (4ac8cd9)
  • fixed bbox size for online creation and bbox size randomization ([5cd6227]...
Read more