Releases: jolibrain/joliGEN
Releases · jolibrain/joliGEN
joliGEN v3.0.0
This release adds Consistency Models and REST API for GAN and diffusion models inference.
Features
- api inference for gan and diffusion (6fd43d8)
- inference server option returns base64 image (5bc8f44)
- ml: consistency models as diffusion models for inpainting, with conditioning (de9d725)
- scripts: canny thresholds grid plots (6d94ffa)
- specialized helpers for each model (f361414)
Bug Fixes
- correct help for image generation scripts (76ce6b4)
- enable model export during training (79525b8)
- not force reloading dinov2 models (800967d)
- ref_in option (2927574)
- resize image to test base64 api diffusion (2708a6f)
Docker images:
- GPU (CUDA only):
docker pull docker.jolibrain.com/joligen_server:v3.0.0
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
joliGEN 2.0.0
Features
- ml: dinov2 discriminator with registers (7fcf790)
- ml: DinoV2 feature-based projected discriminator (c67ffa8)
- ml: SigLIP based projected discriminators (5e10a86)
- optimization eps value control (0556987)
- pix2pix task for palette (7e47139)
- scripts: adding a video generation script for gans (85d1922)
Bug Fixes
- amp for discriminators (811ba3d)
- APA augmentation on multiple discriminators (becb3eb)
- docker release script (f1c56de)
- end of training metrics computation (e1f213c)
- init_metrics directory and metrics on CPU (0b77943)
- load size for rectangular images, resize ref image for inference (965e1bf)
- ml: inference for diffusion with reference image (df8c504)
Docker images:
- GPU (CUDA only): `docker pull docker.jolibrain.com/joligen_server:v$tag`
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
v1.0.0
joliGEN: Generative AI Toolset (Changelog)
1.0.0 (2023-10-06)
Docker
- GPU (CUDA only): `docker pull docker.jolibrain.com/joligen_server:v1.0.0`
- All images available from https://docker.jolibrain.com/#!/taglist/joligen_server
Features
- add a server endpoint to delete files (30b2143)
- add choices for all options (ed43b82)
- add ddim inference (0196134)
- add DDPM tutorial on the VITON-HD dataset (c932d73)
- add FastAPI server to run training (f517462)
- add lambda for semantic losses (aab53fe)
- add LPIPS metric (f1e0526)
- add miou compute to tests (c0033ef)
- add new metrics (f3c84cd)
- add palette model (b7db294)
- add psnr metric (7135458)
- add sampling options to test (a2958dc)
- add SRC and hDCE losses (ddfcc97)
- add test for doc generation (41526f8)
- add test on cycle_gan_semantic_mask (3eeff76)
- add tests for reference image dataloaders (ae6405e)
- added D noise to CUT with semantics (31aa4a3)
- added optimizers and options (505cac2)
- allow control of projected discriminator interpolation (dbffec5)
- allow ViT custom resolution at D projector init (82e6e83)
- api: display current commit at startup (6f90be8)
- aug: affine transforms for semantics (170b0f8)
- aug: configurable online mask delta augmentation by x and y axis (dfa6459)
- aug: select bbox category through the path sanitization functionality (a8d3f48)
- auto download segformer weights (083cc5e)
- backward while computing MSE criterion loss (1b87906)
- bbox as sam prompt (a39c5bd)
- bbox prompt for sam (1fa9cae)
- bilinear interpolation of attention heads when dimension does not match, useful for segformer G (eed9494)
- bw model export (8e43efa)
- check code format when PR (eeb56cb)
- choices for canny random thresholds (9573fc1)
- class weights for semantic segmentation network with cross entropy (4274f1e)
- classifier training on domain B (fa343c0)
- commandline saving (6eb503e)
- commandline script for joligan server calls (48ae23b)
- compute_feats for unet G (9f1109e)
- conditioning for palette (b9854ee)
- config json for client script (174dce9)
- context for D (b0d3c7b)
- contrastive classifier noise (7193e0e)
- contrastive loss for D (deb2ec4)
- cut_semantic model (b20a943)
- D accuracy (26ead91)
- data: random noise in images for object insertion (42cf13d)
- DDP (68f24da)
- deceiving D for GAN training (2e2113f)
- depth model as projector (10ffc28)
- depth prediction and depth discriminator (01bc62b)
- diff augment (054509c)
- diffusion inference with old and new models (9c4c5a9)
- display augmented images (2126253)
- display test images (a1de083)
- doc options auto update (1b08f92)
- doc: add JSON config examples (5332213)
- doc: basic server REST API (a757d17)
- doc: datasets (dfe2343)
- doc: DDPM conditioning training and inference examples (e694a29)
- doc: models (be1fe34)
- doc: refactored README with links to documentation (b5bf121)
- doc: reference image conditioning (70aeb32)
- doc: remove overview (2360527)
- doc: server, client, docker (68a5b96)
- doc: tips (3fea9ca)
- doc: training (a4b720d)
- doc: update inference models and examples (3c43a7b)
- doc: updated FAQ (88b417c)
- doc: updated model export (e692f78)
- edge detection techniques (78202ea)
- export for unet_mha (b4c3cfd)
- extract bbox from img (fb64ef0)
- first recut model (aaa4069)
- first test (4ac8cd9)
- fixed bbox size for online creation and bbox size randomization ([5cd6227]...