forked from murari023/pytorch-yolo3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
region_loss.py
184 lines (169 loc) · 8.47 KB
/
region_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import time
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from utils import *
def build_targets(pred_boxes, target, anchors, num_anchors, num_classes, nH, nW, noobject_scale, object_scale, sil_thresh, seen):
nB = target.size(0)
nA = num_anchors
nC = num_classes
anchor_step = len(anchors)/num_anchors
conf_mask = torch.ones(nB, nA, nH, nW) * noobject_scale
coord_mask = torch.zeros(nB, nA, nH, nW)
cls_mask = torch.zeros(nB, nA, nH, nW)
tx = torch.zeros(nB, nA, nH, nW)
ty = torch.zeros(nB, nA, nH, nW)
tw = torch.zeros(nB, nA, nH, nW)
th = torch.zeros(nB, nA, nH, nW)
tconf = torch.zeros(nB, nA, nH, nW)
tcls = torch.zeros(nB, nA, nH, nW)
nAnchors = nA*nH*nW
nPixels = nH*nW
for b in xrange(nB):
cur_pred_boxes = pred_boxes[b*nAnchors:(b+1)*nAnchors].t()
cur_ious = torch.zeros(nAnchors)
for t in xrange(50):
if target[b][t*5+1] == 0:
break
gx = target[b][t*5+1]*nW
gy = target[b][t*5+2]*nH
gw = target[b][t*5+3]*nW
gh = target[b][t*5+4]*nH
cur_gt_boxes = torch.FloatTensor([gx,gy,gw,gh]).repeat(nAnchors,1).t()
cur_ious = torch.max(cur_ious, bbox_ious(cur_pred_boxes, cur_gt_boxes, x1y1x2y2=False))
conf_mask[b][cur_ious>sil_thresh] = 0
if seen < 12800:
if anchor_step == 4:
tx = torch.FloatTensor(anchors).view(nA, anchor_step).index_select(1, torch.LongTensor([2])).view(1,nA,1,1).repeat(nB,1,nH,nW)
ty = torch.FloatTensor(anchors).view(num_anchors, anchor_step).index_select(1, torch.LongTensor([2])).view(1,nA,1,1).repeat(nB,1,nH,nW)
else:
tx.fill_(0.5)
ty.fill_(0.5)
tw.zero_()
th.zero_()
coord_mask.fill_(1)
nGT = 0
nCorrect = 0
for b in xrange(nB):
for t in xrange(50):
if target[b][t*5+1] == 0:
break
nGT = nGT + 1
best_iou = 0.0
best_n = -1
min_dist = 10000
gx = target[b][t*5+1] * nW
gy = target[b][t*5+2] * nH
gi = int(gx)
gj = int(gy)
gw = target[b][t*5+3]*nW
gh = target[b][t*5+4]*nH
gt_box = [0, 0, gw, gh]
for n in xrange(nA):
aw = anchors[anchor_step*n]
ah = anchors[anchor_step*n+1]
anchor_box = [0, 0, aw, ah]
iou = bbox_iou(anchor_box, gt_box, x1y1x2y2=False)
if anchor_step == 4:
ax = anchors[anchor_step*n+2]
ay = anchors[anchor_step*n+3]
dist = pow(((gi+ax) - gx), 2) + pow(((gj+ay) - gy), 2)
if iou > best_iou:
best_iou = iou
best_n = n
elif anchor_step==4 and iou == best_iou and dist < min_dist:
best_iou = iou
best_n = n
min_dist = dist
gt_box = [gx, gy, gw, gh]
pred_box = pred_boxes[b*nAnchors+best_n*nPixels+gj*nW+gi]
coord_mask[b][best_n][gj][gi] = 1
cls_mask[b][best_n][gj][gi] = 1
conf_mask[b][best_n][gj][gi] = object_scale
tx[b][best_n][gj][gi] = target[b][t*5+1] * nW - gi
ty[b][best_n][gj][gi] = target[b][t*5+2] * nH - gj
tw[b][best_n][gj][gi] = math.log(gw/anchors[anchor_step*best_n])
th[b][best_n][gj][gi] = math.log(gh/anchors[anchor_step*best_n+1])
iou = bbox_iou(gt_box, pred_box, x1y1x2y2=False) # best_iou
tconf[b][best_n][gj][gi] = iou
tcls[b][best_n][gj][gi] = target[b][t*5]
if iou > 0.5:
nCorrect = nCorrect + 1
return nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf, tcls
class RegionLoss(nn.Module):
def __init__(self, num_classes=0, anchors=[], num_anchors=1):
super(RegionLoss, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.anchor_step = len(anchors)/num_anchors
self.coord_scale = 1
self.noobject_scale = 1
self.object_scale = 5
self.class_scale = 1
self.thresh = 0.6
self.seen = 0
def forward(self, output, target):
#output : BxAs*(4+1+num_classes)*H*W
t0 = time.time()
nB = output.data.size(0)
nA = self.num_anchors
nC = self.num_classes
nH = output.data.size(2)
nW = output.data.size(3)
output = output.view(nB, nA, (5+nC), nH, nW)
x = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([0]))).view(nB, nA, nH, nW))
y = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([1]))).view(nB, nA, nH, nW))
w = output.index_select(2, Variable(torch.cuda.LongTensor([2]))).view(nB, nA, nH, nW)
h = output.index_select(2, Variable(torch.cuda.LongTensor([3]))).view(nB, nA, nH, nW)
conf = F.sigmoid(output.index_select(2, Variable(torch.cuda.LongTensor([4]))).view(nB, nA, nH, nW))
cls = output.index_select(2, Variable(torch.linspace(5,5+nC-1,nC).long().cuda()))
cls = cls.view(nB*nA, nC, nH*nW).transpose(1,2).contiguous().view(nB*nA*nH*nW, nC)
t1 = time.time()
pred_boxes = torch.cuda.FloatTensor(4, nB*nA*nH*nW)
grid_x = torch.linspace(0, nW-1, nW).repeat(nH,1).repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
grid_y = torch.linspace(0, nH-1, nH).repeat(nW,1).t().repeat(nB*nA, 1, 1).view(nB*nA*nH*nW).cuda()
anchor_w = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([0])).cuda()
anchor_h = torch.Tensor(self.anchors).view(nA, self.anchor_step).index_select(1, torch.LongTensor([1])).cuda()
anchor_w = anchor_w.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
anchor_h = anchor_h.repeat(nB, 1).repeat(1, 1, nH*nW).view(nB*nA*nH*nW)
pred_boxes[0] = x.data + grid_x
pred_boxes[1] = y.data + grid_y
pred_boxes[2] = torch.exp(w.data) * anchor_w
pred_boxes[3] = torch.exp(h.data) * anchor_h
pred_boxes = convert2cpu(pred_boxes.transpose(0,1).contiguous().view(-1,4))
t2 = time.time()
nGT, nCorrect, coord_mask, conf_mask, cls_mask, tx, ty, tw, th, tconf,tcls = build_targets(pred_boxes, target.data, self.anchors, nA, nC, \
nH, nW, self.noobject_scale, self.object_scale, self.thresh, self.seen)
cls_mask = (cls_mask == 1)
nProposals = int((conf > 0.25).sum().data[0])
tx = Variable(tx.cuda())
ty = Variable(ty.cuda())
tw = Variable(tw.cuda())
th = Variable(th.cuda())
tconf = Variable(tconf.cuda())
tcls = Variable(tcls.view(-1)[cls_mask].long().cuda())
coord_mask = Variable(coord_mask.cuda())
conf_mask = Variable(conf_mask.cuda().sqrt())
cls_mask = Variable(cls_mask.view(-1, 1).repeat(1,nC).cuda())
cls = cls[cls_mask].view(-1, nC)
t3 = time.time()
loss_x = self.coord_scale * nn.MSELoss(size_average=False)(x*coord_mask, tx*coord_mask)/2.0
loss_y = self.coord_scale * nn.MSELoss(size_average=False)(y*coord_mask, ty*coord_mask)/2.0
loss_w = self.coord_scale * nn.MSELoss(size_average=False)(w*coord_mask, tw*coord_mask)/2.0
loss_h = self.coord_scale * nn.MSELoss(size_average=False)(h*coord_mask, th*coord_mask)/2.0
loss_conf = nn.MSELoss(size_average=False)(conf*conf_mask, tconf*conf_mask)/2.0
loss_cls = self.class_scale * nn.CrossEntropyLoss(size_average=False)(cls, tcls)
loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
t4 = time.time()
if False:
print('-----------------------------------')
print(' activation : %f' % (t1 - t0))
print(' create pred_boxes : %f' % (t2 - t1))
print(' build targets : %f' % (t3 - t2))
print(' create loss : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('%d: nGT %d, recall %d, proposals %d, loss: x %f, y %f, w %f, h %f, conf %f, cls %f, total %f' % (self.seen, nGT, nCorrect, nProposals, loss_x.data[0], loss_y.data[0], loss_w.data[0], loss_h.data[0], loss_conf.data[0], loss_cls.data[0], loss.data[0]))
return loss