Convert https://pjreddie.com/darknet/yolo/ into pytorch. This repository works on python 3 and pytorch 1.1.0 on master branch.
- train.py: add command line arguments instead of hard coded config (gpus, use cuda, thresholds)
wget https://pjreddie.com/media/files/yolov3.weights
python detect.py cfg/yolov3.cfg yolov3.weights data/dog.jpg
You will see some output like this:
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64
4 shortcut 1
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
8 shortcut 5
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128
11 shortcut 8
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
15 shortcut 12
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
18 shortcut 15
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
21 shortcut 18
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
24 shortcut 21
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
27 shortcut 24
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
30 shortcut 27
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
33 shortcut 30
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
36 shortcut 33
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
40 shortcut 37
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
43 shortcut 40
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
46 shortcut 43
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
49 shortcut 46
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
52 shortcut 49
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
55 shortcut 52
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
58 shortcut 55
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
61 shortcut 58
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024
63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
65 shortcut 62
66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
68 shortcut 65
69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
71 shortcut 68
72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
74 shortcut 71
75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024
81 conv 255 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 255
82 detection
83 route 79
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256
85 upsample * 2 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512
93 conv 255 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 255
94 detection
95 route 91
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128
97 upsample * 2 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255
106 detection
Loading weights from yolov3.weights... Done!
data/dog.jpg: Predicted in 1.405360 seconds.
dog: 0.999996
truck: 0.995232
bicycle: 0.999972
save plot results to predictions.jpg
- allow to detect custom classes (detect.py)
- python3 and pytorch 1.1 on master branch