Skip to content

Commit

Permalink
improve title logos
Browse files Browse the repository at this point in the history
  • Loading branch information
juanitorduz committed Nov 8, 2023
1 parent e259406 commit 98330b5
Show file tree
Hide file tree
Showing 7 changed files with 14 additions and 14 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -394,7 +394,7 @@
<div class="reveal">
<div class="slides">

<section id="title-slide" data-background-image="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png" data-background-opacity="0.2" class="quarto-title-block center">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</h1>
<p class="subtitle">Machine Learning Week - 2023</p>

Expand Down Expand Up @@ -882,7 +882,7 @@ <h2>Open Source Packages</h2>
<h2>Thank you!</h2>
<p><a href="https://juanitorduz.github.io/">juanitorduz.github.io</a></p>
<p><img data-src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz.png" class="absolute" style="top: 0px; right: 0px; width: 600px; height: 600px; "></p>
<p><img src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png" class="slide-logo"></p>
<p><img src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/wolt_logo.png" class="slide-logo"></p>
<div class="footer footer-default">
<p><a href="https://juanitorduz.github.io/revenue_retention/">Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</a></p>
</div>
Expand Down
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
---
title: "Cohort Revenue & Retention Analysis: A Bayesian Approach"
title-slide-attributes:
data-background-image: revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png
data-background-opacity: "0.2"
subtitle: Machine Learning Week - 2023
author:
- name: Dr. Juan Orduz
Expand All @@ -11,7 +8,7 @@ author:
- name: Mathematician & Data Scientist
format:
revealjs:
logo: revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png
logo: revenue_retention_presentation_files/images/revenue_retention_presentation_files/wolt_logo.png
transition: none
slide-number: true
chalkboard:
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
10 changes: 5 additions & 5 deletions Presentations/pydata_2023/revenue_retention_presentation.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
<link href="revenue_retention_presentation_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="revenue_retention_presentation_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="revenue_retention_presentation_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.3.433">
<meta name="generator" content="quarto-1.3.450">

<meta name="author" content="Dr.&nbsp;Juan Orduz">
<title>Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</title>
Expand Down Expand Up @@ -394,7 +394,7 @@
<div class="reveal">
<div class="slides">

<section id="title-slide" class="quarto-title-block center">
<section id="title-slide" data-background-image="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png" data-background-opacity="0.2" class="quarto-title-block center">
<h1 class="title">Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</h1>
<p class="subtitle">PyData Berlin - July 2023</p>

Expand Down Expand Up @@ -641,13 +641,13 @@ <h2>Bayesian Additive Regression Trees</h2>
<div>
<ul>
<li class="fragment"><p>Bayesian <strong>“sum-of-trees”</strong> model where each tree is constrained by a regularization prior to be a weak learner.</p></li>
<li class="fragment"><p>To fit the sum-of-trees model, BART uses a tailored version of Bayesian backfitting MCMC that <strong>iteratively constructs and fits successive residuals</strong>.</p></li>
<li class="fragment"><p>To fit the sum-of-trees model, BART uses <strong>PGBART</strong>, an inference algorithm based on the particle Gibbs method.</p></li>
<li class="fragment"><p>BART depends on the <strong>number of trees</strong> <span class="math inline">\(m\in \mathbb{N}\)</span> and <strong>prior parameters</strong> <span class="math inline">\(\alpha \in (0, 1)\)</span> and <span class="math inline">\(\beta \in [0, \infty)\)</span> so that the probability that a node at depth <span class="math inline">\(d \in \mathbb{N}_{0}\)</span> is nonterminal is <span class="math inline">\(\alpha(1 + d)^{-\beta}\)</span>.</p></li>
<li class="fragment"><p>BART is implemented in <a href="https://github.com/pymc-devs/pymc-bart"><code>pymc-bart</code></a>.</p></li>
</ul>
</div>
<div class="footer">
<p><a href="https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full">BART: Bayesian additive regression trees</a></p>
<p>See <a href="https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full">BART: Bayesian additive regression trees</a> and <a href="https://arxiv.org/abs/2206.03619">Bayesian additive regression trees for probabilistic programming</a></p>
</div>
</section>
<section id="bart-retention-model" class="slide level2">
Expand Down Expand Up @@ -882,7 +882,7 @@ <h2>Open Source Packages</h2>
<h2>Thank you!</h2>
<p><a href="https://juanitorduz.github.io/">juanitorduz.github.io</a></p>
<p><img data-src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz.png" class="absolute" style="top: 0px; right: 0px; width: 600px; height: 600px; "></p>
<p><img src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo.gif" class="slide-logo"></p>
<p><img src="revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png" class="slide-logo"></p>
<div class="footer footer-default">
<p><a href="https://juanitorduz.github.io/revenue_retention/">Cohort Revenue &amp; Retention Analysis: A Bayesian Approach</a></p>
</div>
Expand Down
9 changes: 6 additions & 3 deletions Presentations/pydata_2023/revenue_retention_presentation.qmd
Original file line number Diff line number Diff line change
@@ -1,5 +1,8 @@
---
title: "Cohort Revenue & Retention Analysis: A Bayesian Approach"
title-slide-attributes:
data-background-image: revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png
data-background-opacity: "0.2"
subtitle: PyData Berlin - July 2023
author:
- name: Dr. Juan Orduz
Expand All @@ -8,7 +11,7 @@ author:
- name: Mathematician & Data Scientist
format:
revealjs:
logo: revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo.gif
logo: revenue_retention_presentation_files/images/revenue_retention_presentation_files/juanitorduz_logo_small.png
transition: none
slide-number: true
chalkboard:
Expand Down Expand Up @@ -309,7 +312,7 @@ We need a more flexible model that can capture **non-linearities and interaction

- Bayesian **"sum-of-trees”** model where each tree is constrained by a regularization prior to be a weak learner.

- To fit the sum-of-trees model, BART uses a tailored version of Bayesian backfitting MCMC that **iteratively constructs and fits successive residuals**.
- To fit the sum-of-trees model, BART uses **PGBART**, an inference algorithm based on the particle Gibbs method.

- BART depends on the **number of trees** $m\in \mathbb{N}$ and **prior parameters** $\alpha \in (0, 1)$ and $\beta \in [0, \infty)$ so that the probability that a node at depth $d \in \mathbb{N}_{0}$ is nonterminal is
$\alpha(1 + d)^{-\beta}$.
Expand All @@ -318,7 +321,7 @@ $\alpha(1 + d)^{-\beta}$.
:::

::: footer
[BART: Bayesian additive regression trees](https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full)
See [BART: Bayesian additive regression trees](https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full) and [Bayesian additive regression trees for probabilistic programming](https://arxiv.org/abs/2206.03619)
:::

## BART Retention Model
Expand Down
Binary file not shown.

0 comments on commit 98330b5

Please sign in to comment.