-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.txt
3256 lines (3256 loc) · 158 KB
/
loss.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MSE + SSIM, current model (Res+U net)
lossMSE: 0.2686838209629059 lossSSIM: 0.9838903546333313
===> Epoch[1](0/16220): Loss: 0.4475
lossMSE: 0.22525112330913544 lossSSIM: 0.949894368648529
===> Epoch[1](50/16220): Loss: 0.4064
lossMSE: 0.21995115280151367 lossSSIM: 0.9486340284347534
===> Epoch[1](100/16220): Loss: 0.4021
lossMSE: 0.2252698391675949 lossSSIM: 0.9594175219535828
===> Epoch[1](150/16220): Loss: 0.4088
lossMSE: 0.2261759340763092 lossSSIM: 0.9554271101951599
===> Epoch[1](200/16220): Loss: 0.4085
lossMSE: 0.21777519583702087 lossSSIM: 0.9472432136535645
===> Epoch[1](250/16220): Loss: 0.4001
lossMSE: 0.21536991000175476 lossSSIM: 0.9469929337501526
===> Epoch[1](300/16220): Loss: 0.3983
lossMSE: 0.22285518050193787 lossSSIM: 0.9540454149246216
===> Epoch[1](350/16220): Loss: 0.4057
lossMSE: 0.21912017464637756 lossSSIM: 0.952680230140686
===> Epoch[1](400/16220): Loss: 0.4025
lossMSE: 0.22066180408000946 lossSSIM: 0.9522578716278076
===> Epoch[1](450/16220): Loss: 0.4036
lossMSE: 0.21234016120433807 lossSSIM: 0.9491323232650757
===> Epoch[1](500/16220): Loss: 0.3965
lossMSE: 0.21839267015457153 lossSSIM: 0.9529401063919067
===> Epoch[1](550/16220): Loss: 0.4020
lossMSE: 0.21538153290748596 lossSSIM: 0.9488859176635742
===> Epoch[1](600/16220): Loss: 0.3988
lossMSE: 0.2198396772146225 lossSSIM: 0.9582845568656921
===> Epoch[1](650/16220): Loss: 0.4045
lossMSE: 0.21055671572685242 lossSSIM: 0.9481678605079651
===> Epoch[1](700/16220): Loss: 0.3950
lossMSE: 0.21389473974704742 lossSSIM: 0.9472212195396423
===> Epoch[1](750/16220): Loss: 0.3972
lossMSE: 0.21121925115585327 lossSSIM: 0.9451214671134949
===> Epoch[1](800/16220): Loss: 0.3947
lossMSE: 0.21099860966205597 lossSSIM: 0.9471288323402405
===> Epoch[1](850/16220): Loss: 0.3950
lossMSE: 0.20489512383937836 lossSSIM: 0.9400267601013184
===> Epoch[1](900/16220): Loss: 0.3887
lossMSE: 0.20836114883422852 lossSSIM: 0.9476473331451416
===> Epoch[1](950/16220): Loss: 0.3932
lossMSE: 0.20680348575115204 lossSSIM: 0.9526785612106323
===> Epoch[1](1000/16220): Loss: 0.3933
lossMSE: 0.21195729076862335 lossSSIM: 0.9544301629066467
===> Epoch[1](1050/16220): Loss: 0.3976
lossMSE: 0.20202182233333588 lossSSIM: 0.9464357495307922
===> Epoch[1](1100/16220): Loss: 0.3881
lossMSE: 0.20054972171783447 lossSSIM: 0.9421747922897339
===> Epoch[1](1150/16220): Loss: 0.3860
lossMSE: 0.20094285905361176 lossSSIM: 0.9436011910438538
===> Epoch[1](1200/16220): Loss: 0.3866
lossMSE: 0.20234286785125732 lossSSIM: 0.9528639316558838
===> Epoch[1](1250/16220): Loss: 0.3900
lossMSE: 0.20464813709259033 lossSSIM: 0.9522685408592224
===> Epoch[1](1300/16220): Loss: 0.3916
lossMSE: 0.1995973140001297 lossSSIM: 0.9532104730606079
===> Epoch[1](1350/16220): Loss: 0.3880
lossMSE: 0.2063053995370865 lossSSIM: 0.957355260848999
===> Epoch[1](1400/16220): Loss: 0.3941
lossMSE: 0.1937459260225296 lossSSIM: 0.9368759393692017
===> Epoch[1](1450/16220): Loss: 0.3795
lossMSE: 0.19677971303462982 lossSSIM: 0.9501034021377563
===> Epoch[1](1500/16220): Loss: 0.3851
lossMSE: 0.19537663459777832 lossSSIM: 0.9462380409240723
===> Epoch[1](1550/16220): Loss: 0.3831
lossMSE: 0.1931278109550476 lossSSIM: 0.9492039084434509
===> Epoch[1](1600/16220): Loss: 0.3821
lossMSE: 0.19461801648139954 lossSSIM: 0.9501791000366211
===> Epoch[1](1650/16220): Loss: 0.3835
lossMSE: 0.1877341866493225 lossSSIM: 0.940796971321106
===> Epoch[1](1700/16220): Loss: 0.3760
lossMSE: 0.19420379400253296 lossSSIM: 0.9494748115539551
===> Epoch[1](1750/16220): Loss: 0.3830
lossMSE: 0.19245311617851257 lossSSIM: 0.9499157071113586
===> Epoch[1](1800/16220): Loss: 0.3818
lossMSE: 0.1876174956560135 lossSSIM: 0.9442185163497925
===> Epoch[1](1850/16220): Loss: 0.3768
lossMSE: 0.18533185124397278 lossSSIM: 0.9494054913520813
===> Epoch[1](1900/16220): Loss: 0.3764
lossMSE: 0.19356602430343628 lossSSIM: 0.9550980925559998
===> Epoch[1](1950/16220): Loss: 0.3839
lossMSE: 0.18484579026699066 lossSSIM: 0.9417779445648193
===> Epoch[1](2000/16220): Loss: 0.3741
lossMSE: 0.182705819606781 lossSSIM: 0.9435364007949829
===> Epoch[1](2050/16220): Loss: 0.3729
lossMSE: 0.18616652488708496 lossSSIM: 0.9472782611846924
===> Epoch[1](2100/16220): Loss: 0.3764
lossMSE: 0.18146491050720215 lossSSIM: 0.9382410645484924
===> Epoch[1](2150/16220): Loss: 0.3707
lossMSE: 0.18319524824619293 lossSSIM: 0.9414493441581726
===> Epoch[1](2200/16220): Loss: 0.3728
lossMSE: 0.1754879206418991 lossSSIM: 0.9466850757598877
===> Epoch[1](2250/16220): Loss: 0.3683
lossMSE: 0.1725759655237198 lossSSIM: 0.9359839558601379
===> Epoch[1](2300/16220): Loss: 0.3634
lossMSE: 0.18388329446315765 lossSSIM: 0.9498475790023804
===> Epoch[1](2350/16220): Loss: 0.3754
lossMSE: 0.17765943706035614 lossSSIM: 0.9434394836425781
===> Epoch[1](2400/16220): Loss: 0.3691
lossMSE: 0.1746378242969513 lossSSIM: 0.944654107093811
===> Epoch[1](2450/16220): Loss: 0.3671
lossMSE: 0.1781127154827118 lossSSIM: 0.9436941146850586
===> Epoch[1](2500/16220): Loss: 0.3695
lossMSE: 0.17764222621917725 lossSSIM: 0.9455509185791016
===> Epoch[1](2550/16220): Loss: 0.3696
lossMSE: 0.1760023981332779 lossSSIM: 0.9447048902511597
===> Epoch[1](2600/16220): Loss: 0.3682
lossMSE: 0.1791994273662567 lossSSIM: 0.9508925676345825
===> Epoch[1](2650/16220): Loss: 0.3721
lossMSE: 0.16928420960903168 lossSSIM: 0.9405566453933716
===> Epoch[1](2700/16220): Loss: 0.3621
lossMSE: 0.1748625636100769 lossSSIM: 0.9445781111717224
===> Epoch[1](2750/16220): Loss: 0.3673
lossMSE: 0.17023903131484985 lossSSIM: 0.9415377974510193
===> Epoch[1](2800/16220): Loss: 0.3631
lossMSE: 0.16739633679389954 lossSSIM: 0.9441535472869873
===> Epoch[1](2850/16220): Loss: 0.3616
lossMSE: 0.16713623702526093 lossSSIM: 0.941459596157074
===> Epoch[1](2900/16220): Loss: 0.3607
lossMSE: 0.16560913622379303 lossSSIM: 0.9425442218780518
===> Epoch[1](2950/16220): Loss: 0.3598
lossMSE: 0.17109355330467224 lossSSIM: 0.948756992816925
===> Epoch[1](3000/16220): Loss: 0.3655
lossMSE: 0.16580325365066528 lossSSIM: 0.9430093169212341
===> Epoch[1](3050/16220): Loss: 0.3601
lossMSE: 0.16553449630737305 lossSSIM: 0.937706708908081
===> Epoch[1](3100/16220): Loss: 0.3586
lossMSE: 0.167500302195549 lossSSIM: 0.9466268420219421
===> Epoch[1](3150/16220): Loss: 0.3623
lossMSE: 0.16367077827453613 lossSSIM: 0.9451397657394409
===> Epoch[1](3200/16220): Loss: 0.3590
lossMSE: 0.16170185804367065 lossSSIM: 0.9397379755973816
===> Epoch[1](3250/16220): Loss: 0.3562
lossMSE: 0.1635989397764206 lossSSIM: 0.9429436326026917
===> Epoch[1](3300/16220): Loss: 0.3584
lossMSE: 0.16079384088516235 lossSSIM: 0.9435058236122131
===> Epoch[1](3350/16220): Loss: 0.3565
lossMSE: 0.1609439104795456 lossSSIM: 0.948976457118988
===> Epoch[1](3400/16220): Loss: 0.3580
lossMSE: 0.1612185537815094 lossSSIM: 0.9472178816795349
===> Epoch[1](3450/16220): Loss: 0.3577
lossMSE: 0.1571701318025589 lossSSIM: 0.9377083778381348
===> Epoch[1](3500/16220): Loss: 0.3523
lossMSE: 0.15315374732017517 lossSSIM: 0.934291422367096
===> Epoch[1](3550/16220): Loss: 0.3484
lossMSE: 0.16006164252758026 lossSSIM: 0.9462381601333618
===> Epoch[1](3600/16220): Loss: 0.3566
lossMSE: 0.1519811898469925 lossSSIM: 0.9391881227493286
===> Epoch[1](3650/16220): Loss: 0.3488
lossMSE: 0.15362556278705597 lossSSIM: 0.9361050128936768
===> Epoch[1](3700/16220): Loss: 0.3492
lossMSE: 0.14769911766052246 lossSSIM: 0.9354880452156067
===> Epoch[1](3750/16220): Loss: 0.3446
lossMSE: 0.1552371382713318 lossSSIM: 0.9444968104362488
===> Epoch[1](3800/16220): Loss: 0.3526
lossMSE: 0.15028487145900726 lossSSIM: 0.939358651638031
===> Epoch[1](3850/16220): Loss: 0.3476
lossMSE: 0.15230822563171387 lossSSIM: 0.9393465518951416
===> Epoch[1](3900/16220): Loss: 0.3491
lossMSE: 0.15100586414337158 lossSSIM: 0.9403052926063538
===> Epoch[1](3950/16220): Loss: 0.3483
lossMSE: 0.14620660245418549 lossSSIM: 0.9302588105201721
===> Epoch[1](4000/16220): Loss: 0.3422
lossMSE: 0.14791080355644226 lossSSIM: 0.9400829076766968
===> Epoch[1](4050/16220): Loss: 0.3460
lossMSE: 0.14422659575939178 lossSSIM: 0.9332203269004822
===> Epoch[1](4100/16220): Loss: 0.3415
lossMSE: 0.1489707976579666 lossSSIM: 0.9450337290763855
===> Epoch[1](4150/16220): Loss: 0.3480
lossMSE: 0.14653430879116058 lossSSIM: 0.938614547252655
===> Epoch[1](4200/16220): Loss: 0.3446
lossMSE: 0.14789099991321564 lossSSIM: 0.9462420344352722
===> Epoch[1](4250/16220): Loss: 0.3475
lossMSE: 0.14460603892803192 lossSSIM: 0.9419711828231812
===> Epoch[1](4300/16220): Loss: 0.3439
lossMSE: 0.14060118794441223 lossSSIM: 0.9273629784584045
===> Epoch[1](4350/16220): Loss: 0.3373
lossMSE: 0.1449260264635086 lossSSIM: 0.9407814741134644
===> Epoch[1](4400/16220): Loss: 0.3439
lossMSE: 0.13586470484733582 lossSSIM: 0.9343789219856262
===> Epoch[1](4450/16220): Loss: 0.3355
lossMSE: 0.13739699125289917 lossSSIM: 0.937985897064209
===> Epoch[1](4500/16220): Loss: 0.3375
lossMSE: 0.14211112260818481 lossSSIM: 0.9377210736274719
===> Epoch[1](4550/16220): Loss: 0.3410
lossMSE: 0.134311705827713 lossSSIM: 0.9265117049217224
===> Epoch[1](4600/16220): Loss: 0.3324
lossMSE: 0.1400250941514969 lossSSIM: 0.9410459995269775
===> Epoch[1](4650/16220): Loss: 0.3403
lossMSE: 0.13554014265537262 lossSSIM: 0.9326379895210266
===> Epoch[1](4700/16220): Loss: 0.3348
lossMSE: 0.1337631344795227 lossSSIM: 0.935478150844574
===> Epoch[1](4750/16220): Loss: 0.3342
lossMSE: 0.13461188971996307 lossSSIM: 0.9377166032791138
===> Epoch[1](4800/16220): Loss: 0.3354
lossMSE: 0.1351032704114914 lossSSIM: 0.9394116997718811
===> Epoch[1](4850/16220): Loss: 0.3362
lossMSE: 0.13376180827617645 lossSSIM: 0.9340456128120422
===> Epoch[1](4900/16220): Loss: 0.3338
lossMSE: 0.13569626212120056 lossSSIM: 0.942543089389801
===> Epoch[1](4950/16220): Loss: 0.3374
lossMSE: 0.13654381036758423 lossSSIM: 0.9416518807411194
===> Epoch[1](5000/16220): Loss: 0.3378
lossMSE: 0.1299549788236618 lossSSIM: 0.9285772442817688
===> Epoch[1](5050/16220): Loss: 0.3296
lossMSE: 0.1301947683095932 lossSSIM: 0.9340035319328308
===> Epoch[1](5100/16220): Loss: 0.3311
lossMSE: 0.13091754913330078 lossSSIM: 0.9349669218063354
===> Epoch[1](5150/16220): Loss: 0.3319
lossMSE: 0.13276876509189606 lossSSIM: 0.9449013471603394
===> Epoch[1](5200/16220): Loss: 0.3358
lossMSE: 0.13060857355594635 lossSSIM: 0.9384306073188782
===> Epoch[1](5250/16220): Loss: 0.3326
lossMSE: 0.13078458607196808 lossSSIM: 0.9415808916091919
===> Epoch[1](5300/16220): Loss: 0.3335
lossMSE: 0.12172223627567291 lossSSIM: 0.9256309866905212
===> Epoch[1](5350/16220): Loss: 0.3227
lossMSE: 0.12632693350315094 lossSSIM: 0.9358290433883667
===> Epoch[1](5400/16220): Loss: 0.3287
lossMSE: 0.12403740733861923 lossSSIM: 0.9262981414794922
===> Epoch[1](5450/16220): Loss: 0.3246
lossMSE: 0.1235266923904419 lossSSIM: 0.9291101694107056
===> Epoch[1](5500/16220): Loss: 0.3249
lossMSE: 0.12856696546077728 lossSSIM: 0.9459508061408997
===> Epoch[1](5550/16220): Loss: 0.3329
lossMSE: 0.12187608331441879 lossSSIM: 0.9342968463897705
===> Epoch[1](5600/16220): Loss: 0.3250
lossMSE: 0.12625394761562347 lossSSIM: 0.9434482455253601
===> Epoch[1](5650/16220): Loss: 0.3306
lossMSE: 0.12275727838277817 lossSSIM: 0.9366347193717957
===> Epoch[1](5700/16220): Loss: 0.3262
lossMSE: 0.12066052109003067 lossSSIM: 0.9352784156799316
===> Epoch[1](5750/16220): Loss: 0.3243
lossMSE: 0.12048515677452087 lossSSIM: 0.9377062916755676
===> Epoch[1](5800/16220): Loss: 0.3248
lossMSE: 0.11840403825044632 lossSSIM: 0.931702733039856
===> Epoch[1](5850/16220): Loss: 0.3217
lossMSE: 0.12004268914461136 lossSSIM: 0.9350223541259766
===> Epoch[1](5900/16220): Loss: 0.3238
lossMSE: 0.11973167210817337 lossSSIM: 0.9387111663818359
===> Epoch[1](5950/16220): Loss: 0.3245
lossMSE: 0.11754605919122696 lossSSIM: 0.9318766593933105
===> Epoch[1](6000/16220): Loss: 0.3211
lossMSE: 0.11518915742635727 lossSSIM: 0.9274911284446716
===> Epoch[1](6050/16220): Loss: 0.3183
lossMSE: 0.11228253692388535 lossSSIM: 0.9171810150146484
===> Epoch[1](6100/16220): Loss: 0.3135
lossMSE: 0.11716072261333466 lossSSIM: 0.9411943554878235
===> Epoch[1](6150/16220): Loss: 0.3232
lossMSE: 0.11351006478071213 lossSSIM: 0.9321883916854858
===> Epoch[1](6200/16220): Loss: 0.3182
lossMSE: 0.11137096583843231 lossSSIM: 0.9239379167556763
===> Epoch[1](6250/16220): Loss: 0.3145
lossMSE: 0.11454764753580093 lossSSIM: 0.9332079887390137
===> Epoch[1](6300/16220): Loss: 0.3192
lossMSE: 0.11092469096183777 lossSSIM: 0.9269026517868042
===> Epoch[1](6350/16220): Loss: 0.3149
lossMSE: 0.1136852502822876 lossSSIM: 0.9342808127403259
===> Epoch[1](6400/16220): Loss: 0.3188
lossMSE: 0.10740257799625397 lossSSIM: 0.9256640672683716
===> Epoch[1](6450/16220): Loss: 0.3120
lossMSE: 0.10771232098340988 lossSSIM: 0.9217369556427002
===> Epoch[1](6500/16220): Loss: 0.3112
lossMSE: 0.10784110426902771 lossSSIM: 0.9244450330734253
===> Epoch[1](6550/16220): Loss: 0.3120
lossMSE: 0.10760902613401413 lossSSIM: 0.932867705821991
===> Epoch[1](6600/16220): Loss: 0.3139
lossMSE: 0.11044561862945557 lossSSIM: 0.9353711009025574
===> Epoch[1](6650/16220): Loss: 0.3167
lossMSE: 0.10815726220607758 lossSSIM: 0.9321684241294861
===> Epoch[1](6700/16220): Loss: 0.3142
lossMSE: 0.1067027673125267 lossSSIM: 0.9262147545814514
===> Epoch[1](6750/16220): Loss: 0.3116
lossMSE: 0.10141222923994064 lossSSIM: 0.925277590751648
===> Epoch[1](6800/16220): Loss: 0.3074
lossMSE: 0.09922218322753906 lossSSIM: 0.9088983535766602
===> Epoch[1](6850/16220): Loss: 0.3016
lossMSE: 0.10555385798215866 lossSSIM: 0.927487850189209
===> Epoch[1](6900/16220): Loss: 0.3110
lossMSE: 0.10149358212947845 lossSSIM: 0.9177016019821167
===> Epoch[1](6950/16220): Loss: 0.3055
lossMSE: 0.10198994725942612 lossSSIM: 0.9210901260375977
===> Epoch[1](7000/16220): Loss: 0.3068
lossMSE: 0.10294687747955322 lossSSIM: 0.9262465834617615
===> Epoch[1](7050/16220): Loss: 0.3088
lossMSE: 0.10756424069404602 lossSSIM: 0.9428936839103699
===> Epoch[1](7100/16220): Loss: 0.3164
lossMSE: 0.10206162929534912 lossSSIM: 0.9248406887054443
===> Epoch[1](7150/16220): Loss: 0.3078
lossMSE: 0.10386237502098083 lossSSIM: 0.9316977262496948
===> Epoch[1](7200/16220): Loss: 0.3108
lossMSE: 0.09784381091594696 lossSSIM: 0.9271194338798523
===> Epoch[1](7250/16220): Loss: 0.3052
lossMSE: 0.10146747529506683 lossSSIM: 0.929148256778717
===> Epoch[1](7300/16220): Loss: 0.3084
lossMSE: 0.10262681543827057 lossSSIM: 0.9364156126976013
===> Epoch[1](7350/16220): Loss: 0.3111
lossMSE: 0.09819170832633972 lossSSIM: 0.9192476272583008
===> Epoch[1](7400/16220): Loss: 0.3035
lossMSE: 0.09389632940292358 lossSSIM: 0.9179010987281799
===> Epoch[1](7450/16220): Loss: 0.2999
lossMSE: 0.10089153796434402 lossSSIM: 0.9360784292221069
===> Epoch[1](7500/16220): Loss: 0.3097
lossMSE: 0.09171950817108154 lossSSIM: 0.914925754070282
===> Epoch[1](7550/16220): Loss: 0.2975
lossMSE: 0.0954107940196991 lossSSIM: 0.9219272136688232
===> Epoch[1](7600/16220): Loss: 0.3020
lossMSE: 0.09316752851009369 lossSSIM: 0.9160917401313782
===> Epoch[1](7650/16220): Loss: 0.2989
lossMSE: 0.09463423490524292 lossSSIM: 0.9228299856185913
===> Epoch[1](7700/16220): Loss: 0.3017
lossMSE: 0.09410044550895691 lossSSIM: 0.9242242574691772
===> Epoch[1](7750/16220): Loss: 0.3016
lossMSE: 0.09269107133150101 lossSSIM: 0.9179094433784485
===> Epoch[1](7800/16220): Loss: 0.2990
lossMSE: 0.09500560909509659 lossSSIM: 0.9312063455581665
===> Epoch[1](7850/16220): Loss: 0.3041
lossMSE: 0.09346495568752289 lossSSIM: 0.9260598421096802
===> Epoch[1](7900/16220): Loss: 0.3016
lossMSE: 0.09142165631055832 lossSSIM: 0.9201967120170593
===> Epoch[1](7950/16220): Loss: 0.2986
lossMSE: 0.08961457759141922 lossSSIM: 0.9143548011779785
===> Epoch[1](8000/16220): Loss: 0.2958
lossMSE: 0.09198883920907974 lossSSIM: 0.9286208152770996
===> Epoch[1](8050/16220): Loss: 0.3011
lossMSE: 0.09135585278272629 lossSSIM: 0.9285802245140076
===> Epoch[1](8100/16220): Loss: 0.3007
lossMSE: 0.08899512141942978 lossSSIM: 0.919852077960968
===> Epoch[1](8150/16220): Loss: 0.2967
lossMSE: 0.09025241434574127 lossSSIM: 0.9207534790039062
===> Epoch[1](8200/16220): Loss: 0.2979
lossMSE: 0.08985794335603714 lossSSIM: 0.9244697093963623
===> Epoch[1](8250/16220): Loss: 0.2985
lossMSE: 0.087934210896492 lossSSIM: 0.9285294413566589
===> Epoch[1](8300/16220): Loss: 0.2981
lossMSE: 0.08743308484554291 lossSSIM: 0.9254079461097717
===> Epoch[1](8350/16220): Loss: 0.2969
lossMSE: 0.08597120642662048 lossSSIM: 0.9273663759231567
===> Epoch[1](8400/16220): Loss: 0.2963
lossMSE: 0.08612508326768875 lossSSIM: 0.9232851266860962
===> Epoch[1](8450/16220): Loss: 0.2954
lossMSE: 0.08555568009614944 lossSSIM: 0.9274564385414124
===> Epoch[1](8500/16220): Loss: 0.2960
lossMSE: 0.08552472293376923 lossSSIM: 0.9216060638427734
===> Epoch[1](8550/16220): Loss: 0.2945
lossMSE: 0.0838325247168541 lossSSIM: 0.9217653274536133
===> Epoch[1](8600/16220): Loss: 0.2933
lossMSE: 0.08586705476045609 lossSSIM: 0.9250525832176208
===> Epoch[1](8650/16220): Loss: 0.2957
lossMSE: 0.0837390199303627 lossSSIM: 0.9175140261650085
===> Epoch[1](8700/16220): Loss: 0.2922
lossMSE: 0.08354274183511734 lossSSIM: 0.9222016930580139
===> Epoch[1](8750/16220): Loss: 0.2932
lossMSE: 0.0842592865228653 lossSSIM: 0.931605875492096
===> Epoch[1](8800/16220): Loss: 0.2961
lossMSE: 0.08313747495412827 lossSSIM: 0.9263900518417358
===> Epoch[1](8850/16220): Loss: 0.2940
lossMSE: 0.08308154344558716 lossSSIM: 0.9226160049438477
===> Epoch[1](8900/16220): Loss: 0.2930
lossMSE: 0.08130420744419098 lossSSIM: 0.9207376837730408
===> Epoch[1](8950/16220): Loss: 0.2912
lossMSE: 0.07726743817329407 lossSSIM: 0.9004363417625427
===> Epoch[1](9000/16220): Loss: 0.2831
lossMSE: 0.0788167342543602 lossSSIM: 0.914350152015686
===> Epoch[1](9050/16220): Loss: 0.2877
lossMSE: 0.08224691450595856 lossSSIM: 0.9273945689201355
===> Epoch[1](9100/16220): Loss: 0.2935
lossMSE: 0.0799601599574089 lossSSIM: 0.9168947339057922
===> Epoch[1](9150/16220): Loss: 0.2892
lossMSE: 0.08076895773410797 lossSSIM: 0.9196454286575317
===> Epoch[1](9200/16220): Loss: 0.2905
lossMSE: 0.07697691023349762 lossSSIM: 0.9132847785949707
===> Epoch[1](9250/16220): Loss: 0.2861
lossMSE: 0.0754757896065712 lossSSIM: 0.9099569916725159
===> Epoch[1](9300/16220): Loss: 0.2841
lossMSE: 0.07846662402153015 lossSSIM: 0.9279008507728577
===> Epoch[1](9350/16220): Loss: 0.2908
lossMSE: 0.07378019392490387 lossSSIM: 0.9056175351142883
===> Epoch[1](9400/16220): Loss: 0.2817
lossMSE: 0.07367781549692154 lossSSIM: 0.90145343542099
===> Epoch[1](9450/16220): Loss: 0.2806
lossMSE: 0.07553958147764206 lossSSIM: 0.9153621792793274
===> Epoch[1](9500/16220): Loss: 0.2855
lossMSE: 0.07554137706756592 lossSSIM: 0.9188135266304016
===> Epoch[1](9550/16220): Loss: 0.2864
lossMSE: 0.07182332128286362 lossSSIM: 0.9029577374458313
===> Epoch[1](9600/16220): Loss: 0.2796
lossMSE: 0.07712217420339584 lossSSIM: 0.9267027378082275
===> Epoch[1](9650/16220): Loss: 0.2895
lossMSE: 0.07358478009700775 lossSSIM: 0.9144518375396729
===> Epoch[1](9700/16220): Loss: 0.2838
lossMSE: 0.07314522564411163 lossSSIM: 0.9190006256103516
===> Epoch[1](9750/16220): Loss: 0.2846
lossMSE: 0.0739118680357933 lossSSIM: 0.9177477359771729
===> Epoch[1](9800/16220): Loss: 0.2849
lossMSE: 0.07445544749498367 lossSSIM: 0.9273891448974609
===> Epoch[1](9850/16220): Loss: 0.2877
lossMSE: 0.07027693837881088 lossSSIM: 0.9153789281845093
===> Epoch[1](9900/16220): Loss: 0.2816
lossMSE: 0.07011978328227997 lossSSIM: 0.9123429656028748
===> Epoch[1](9950/16220): Loss: 0.2807
lossMSE: 0.06957543641328812 lossSSIM: 0.910987377166748
===> Epoch[1](10000/16220): Loss: 0.2799
lossMSE: 0.07141144573688507 lossSSIM: 0.9222594499588013
===> Epoch[1](10050/16220): Loss: 0.2841
lossMSE: 0.06793664395809174 lossSSIM: 0.8973056674003601
===> Epoch[1](10100/16220): Loss: 0.2753
lossMSE: 0.0682813748717308 lossSSIM: 0.9158354997634888
===> Epoch[1](10150/16220): Loss: 0.2802
lossMSE: 0.06885742396116257 lossSSIM: 0.9216623902320862
===> Epoch[1](10200/16220): Loss: 0.2821
lossMSE: 0.06732040643692017 lossSSIM: 0.9114428162574768
===> Epoch[1](10250/16220): Loss: 0.2784
lossMSE: 0.06800460815429688 lossSSIM: 0.9138988852500916
===> Epoch[1](10300/16220): Loss: 0.2795
lossMSE: 0.0663786381483078 lossSSIM: 0.91196209192276
===> Epoch[1](10350/16220): Loss: 0.2778
lossMSE: 0.06684588640928268 lossSSIM: 0.9162812232971191
===> Epoch[1](10400/16220): Loss: 0.2792
lossMSE: 0.06740757077932358 lossSSIM: 0.918725848197937
===> Epoch[1](10450/16220): Loss: 0.2802
lossMSE: 0.06608311086893082 lossSSIM: 0.9119342565536499
===> Epoch[1](10500/16220): Loss: 0.2775
lossMSE: 0.06412295997142792 lossSSIM: 0.904985249042511
===> Epoch[1](10550/16220): Loss: 0.2743
lossMSE: 0.06595548987388611 lossSSIM: 0.9160378575325012
===> Epoch[1](10600/16220): Loss: 0.2785
lossMSE: 0.06444588303565979 lossSSIM: 0.9147091507911682
===> Epoch[1](10650/16220): Loss: 0.2770
lossMSE: 0.06536728143692017 lossSSIM: 0.9173177480697632
===> Epoch[1](10700/16220): Loss: 0.2784
lossMSE: 0.0641699954867363 lossSSIM: 0.9135922193527222
===> Epoch[1](10750/16220): Loss: 0.2765
lossMSE: 0.06278657913208008 lossSSIM: 0.9080862998962402
===> Epoch[1](10800/16220): Loss: 0.2741
lossMSE: 0.0656718835234642 lossSSIM: 0.9162863492965698
===> Epoch[1](10850/16220): Loss: 0.2783
lossMSE: 0.061717674136161804 lossSSIM: 0.9074892401695251
===> Epoch[1](10900/16220): Loss: 0.2732
lossMSE: 0.0621187761425972 lossSSIM: 0.9024670720100403
===> Epoch[1](10950/16220): Loss: 0.2722
lossMSE: 0.0607701875269413 lossSSIM: 0.9032696485519409
===> Epoch[1](11000/16220): Loss: 0.2714
lossMSE: 0.06263433396816254 lossSSIM: 0.913982093334198
===> Epoch[1](11050/16220): Loss: 0.2755
lossMSE: 0.05995097756385803 lossSSIM: 0.9058236479759216
===> Epoch[1](11100/16220): Loss: 0.2714
lossMSE: 0.06168361380696297 lossSSIM: 0.9217557311058044
===> Epoch[1](11150/16220): Loss: 0.2767
lossMSE: 0.05717093497514725 lossSSIM: 0.8909684419631958
===> Epoch[1](11200/16220): Loss: 0.2656
lossMSE: 0.05815347284078598 lossSSIM: 0.9009391069412231
===> Epoch[1](11250/16220): Loss: 0.2688
lossMSE: 0.0568942092359066 lossSSIM: 0.8941094875335693
===> Epoch[1](11300/16220): Loss: 0.2662
lossMSE: 0.06013046205043793 lossSSIM: 0.9044719338417053
===> Epoch[1](11350/16220): Loss: 0.2712
lossMSE: 0.060173992067575455 lossSSIM: 0.9159558415412903
===> Epoch[1](11400/16220): Loss: 0.2741
lossMSE: 0.057968005537986755 lossSSIM: 0.9075373411178589
===> Epoch[1](11450/16220): Loss: 0.2704
lossMSE: 0.05473983660340309 lossSSIM: 0.888356626033783
===> Epoch[1](11500/16220): Loss: 0.2631
lossMSE: 0.056638140231370926 lossSSIM: 0.9063258171081543
===> Epoch[1](11550/16220): Loss: 0.2691
lossMSE: 0.05685765668749809 lossSSIM: 0.9014222025871277
===> Epoch[1](11600/16220): Loss: 0.2680
lossMSE: 0.05826646462082863 lossSSIM: 0.9173691868782043
===> Epoch[1](11650/16220): Loss: 0.2730
lossMSE: 0.05457472801208496 lossSSIM: 0.8967239856719971
===> Epoch[1](11700/16220): Loss: 0.2651
lossMSE: 0.05467125400900841 lossSSIM: 0.9009591341018677
===> Epoch[1](11750/16220): Loss: 0.2662
lossMSE: 0.05530818551778793 lossSSIM: 0.9032440185546875
===> Epoch[1](11800/16220): Loss: 0.2673
lossMSE: 0.055727384984493256 lossSSIM: 0.9056719541549683
===> Epoch[1](11850/16220): Loss: 0.2682
lossMSE: 0.055796775966882706 lossSSIM: 0.9134364724159241
===> Epoch[1](11900/16220): Loss: 0.2702
lossMSE: 0.053044822067022324 lossSSIM: 0.8957430124282837
===> Epoch[1](11950/16220): Loss: 0.2637
lossMSE: 0.052603546530008316 lossSSIM: 0.8931750059127808
===> Epoch[1](12000/16220): Loss: 0.2627
lossMSE: 0.055259764194488525 lossSSIM: 0.9073024988174438
===> Epoch[1](12050/16220): Loss: 0.2683
lossMSE: 0.05589865893125534 lossSSIM: 0.9209021329879761
===> Epoch[1](12100/16220): Loss: 0.2721
lossMSE: 0.053442373871803284 lossSSIM: 0.9060420989990234
===> Epoch[1](12150/16220): Loss: 0.2666
lossMSE: 0.052432309836149216 lossSSIM: 0.8981621265411377
===> Epoch[1](12200/16220): Loss: 0.2639
lossMSE: 0.050788454711437225 lossSSIM: 0.8916141390800476
===> Epoch[1](12250/16220): Loss: 0.2610
lossMSE: 0.05134904384613037 lossSSIM: 0.8959915041923523
===> Epoch[1](12300/16220): Loss: 0.2625
lossMSE: 0.05106846243143082 lossSSIM: 0.8977846503257751
===> Epoch[1](12350/16220): Loss: 0.2627
lossMSE: 0.05198259651660919 lossSSIM: 0.9065226912498474
===> Epoch[1](12400/16220): Loss: 0.2656
lossMSE: 0.05218798667192459 lossSSIM: 0.9075669050216675
===> Epoch[1](12450/16220): Loss: 0.2660
lossMSE: 0.048690058290958405 lossSSIM: 0.8932592272758484
===> Epoch[1](12500/16220): Loss: 0.2598
lossMSE: 0.04985067620873451 lossSSIM: 0.8960438966751099
===> Epoch[1](12550/16220): Loss: 0.2614
lossMSE: 0.04845890402793884 lossSSIM: 0.8862578868865967
===> Epoch[1](12600/16220): Loss: 0.2579
lossMSE: 0.049952395260334015 lossSSIM: 0.906531810760498
===> Epoch[1](12650/16220): Loss: 0.2641
lossMSE: 0.049892064183950424 lossSSIM: 0.9167389273643494
===> Epoch[1](12700/16220): Loss: 0.2666
lossMSE: 0.049255166202783585 lossSSIM: 0.897293210029602
===> Epoch[1](12750/16220): Loss: 0.2613
lossMSE: 0.04797660931944847 lossSSIM: 0.9000298976898193
===> Epoch[1](12800/16220): Loss: 0.2610
lossMSE: 0.048358213156461716 lossSSIM: 0.9012803435325623
===> Epoch[1](12850/16220): Loss: 0.2616
lossMSE: 0.047223083674907684 lossSSIM: 0.8937867283821106
===> Epoch[1](12900/16220): Loss: 0.2589
lossMSE: 0.04766366630792618 lossSSIM: 0.9027027487754822
===> Epoch[1](12950/16220): Loss: 0.2614
lossMSE: 0.046674907207489014 lossSSIM: 0.8893958330154419
===> Epoch[1](13000/16220): Loss: 0.2574
lossMSE: 0.045912966132164 lossSSIM: 0.8926360011100769
===> Epoch[1](13050/16220): Loss: 0.2576
lossMSE: 0.04590074345469475 lossSSIM: 0.8954012989997864
===> Epoch[1](13100/16220): Loss: 0.2583
lossMSE: 0.04565967619419098 lossSSIM: 0.8933253288269043
===> Epoch[1](13150/16220): Loss: 0.2576
lossMSE: 0.04480802267789841 lossSSIM: 0.8963655829429626
===> Epoch[1](13200/16220): Loss: 0.2577
lossMSE: 0.04598593711853027 lossSSIM: 0.8872705698013306
===> Epoch[1](13250/16220): Loss: 0.2563
lossMSE: 0.04586760699748993 lossSSIM: 0.8909169435501099
===> Epoch[1](13300/16220): Loss: 0.2571
lossMSE: 0.0444122813642025 lossSSIM: 0.8902642130851746
===> Epoch[1](13350/16220): Loss: 0.2559
lossMSE: 0.043463557958602905 lossSSIM: 0.8853802680969238
===> Epoch[1](13400/16220): Loss: 0.2539
lossMSE: 0.04291326552629471 lossSSIM: 0.8947541117668152
===> Epoch[1](13450/16220): Loss: 0.2559
lossMSE: 0.044950537383556366 lossSSIM: 0.9081171751022339
===> Epoch[1](13500/16220): Loss: 0.2607
lossMSE: 0.043165422976017 lossSSIM: 0.8939714431762695
===> Epoch[1](13550/16220): Loss: 0.2559
lossMSE: 0.04279990866780281 lossSSIM: 0.8837719559669495
===> Epoch[1](13600/16220): Loss: 0.2530
lossMSE: 0.04214750975370407 lossSSIM: 0.8800502419471741
===> Epoch[1](13650/16220): Loss: 0.2516
lossMSE: 0.04357164725661278 lossSSIM: 0.8989002108573914
===> Epoch[1](13700/16220): Loss: 0.2574
lossMSE: 0.04279510676860809 lossSSIM: 0.885785698890686
===> Epoch[1](13750/16220): Loss: 0.2535
lossMSE: 0.044708460569381714 lossSSIM: 0.8871988654136658
===> Epoch[1](13800/16220): Loss: 0.2553
lossMSE: 0.04336804151535034 lossSSIM: 0.9024879932403564
===> Epoch[1](13850/16220): Loss: 0.2581
lossMSE: 0.04152090102434158 lossSSIM: 0.8811392784118652
===> Epoch[1](13900/16220): Loss: 0.2514
lossMSE: 0.04046927019953728 lossSSIM: 0.8791556358337402
===> Epoch[1](13950/16220): Loss: 0.2501
lossMSE: 0.041394177824258804 lossSSIM: 0.8907656669616699
===> Epoch[1](14000/16220): Loss: 0.2537
lossMSE: 0.04040379822254181 lossSSIM: 0.8841704726219177
===> Epoch[1](14050/16220): Loss: 0.2513
lossMSE: 0.04052875563502312 lossSSIM: 0.8873858451843262
===> Epoch[1](14100/16220): Loss: 0.2522
lossMSE: 0.041472889482975006 lossSSIM: 0.8897403478622437
===> Epoch[1](14150/16220): Loss: 0.2535
lossMSE: 0.040284641087055206 lossSSIM: 0.8800407648086548
===> Epoch[1](14200/16220): Loss: 0.2502
lossMSE: 0.03864903748035431 lossSSIM: 0.8910250663757324
===> Epoch[1](14250/16220): Loss: 0.2517
lossMSE: 0.03984871506690979 lossSSIM: 0.8974394798278809
===> Epoch[1](14300/16220): Loss: 0.2542
lossMSE: 0.038640670478343964 lossSSIM: 0.8855277299880981
===> Epoch[1](14350/16220): Loss: 0.2504
lossMSE: 0.037149980664253235 lossSSIM: 0.870811939239502
===> Epoch[1](14400/16220): Loss: 0.2456
lossMSE: 0.038934241980314255 lossSSIM: 0.8797478079795837
===> Epoch[1](14450/16220): Loss: 0.2491
lossMSE: 0.0382532924413681 lossSSIM: 0.8832666873931885
===> Epoch[1](14500/16220): Loss: 0.2495
lossMSE: 0.03839476779103279 lossSSIM: 0.8743144869804382
===> Epoch[1](14550/16220): Loss: 0.2474
lossMSE: 0.03749348968267441 lossSSIM: 0.8729773759841919
===> Epoch[1](14600/16220): Loss: 0.2464
lossMSE: 0.03644447401165962 lossSSIM: 0.8727670907974243
===> Epoch[1](14650/16220): Loss: 0.2455
lossMSE: 0.03573670983314514 lossSSIM: 0.8760016560554504
===> Epoch[1](14700/16220): Loss: 0.2458
lossMSE: 0.03718619793653488 lossSSIM: 0.8703135251998901
===> Epoch[1](14750/16220): Loss: 0.2455
lossMSE: 0.035949885845184326 lossSSIM: 0.8624017238616943
===> Epoch[1](14800/16220): Loss: 0.2426
lossMSE: 0.037150848656892776 lossSSIM: 0.8714330792427063
===> Epoch[1](14850/16220): Loss: 0.2457
lossMSE: 0.03754187747836113 lossSSIM: 0.8611080646514893
===> Epoch[1](14900/16220): Loss: 0.2434
lossMSE: 0.035180650651454926 lossSSIM: 0.8663192391395569
===> Epoch[1](14950/16220): Loss: 0.2430
lossMSE: 0.03572258725762367 lossSSIM: 0.8914061784744263
===> Epoch[1](15000/16220): Loss: 0.2496
lossMSE: 0.03532484173774719 lossSSIM: 0.885718822479248
===> Epoch[1](15050/16220): Loss: 0.2479
lossMSE: 0.03641828894615173 lossSSIM: 0.8841038346290588
===> Epoch[1](15100/16220): Loss: 0.2483
lossMSE: 0.03482389822602272 lossSSIM: 0.8723593354225159
===> Epoch[1](15150/16220): Loss: 0.2442
lossMSE: 0.03514754772186279 lossSSIM: 0.8857381939888
===> Epoch[1](15200/16220): Loss: 0.2478
lossMSE: 0.03600333258509636 lossSSIM: 0.8696131706237793
===> Epoch[1](15250/16220): Loss: 0.2444
lossMSE: 0.034038763493299484 lossSSIM: 0.8654524087905884
===> Epoch[1](15300/16220): Loss: 0.2419
lossMSE: 0.034001484513282776 lossSSIM: 0.8799350261688232
===> Epoch[1](15350/16220): Loss: 0.2455
lossMSE: 0.032377347350120544 lossSSIM: 0.8603711128234863
===> Epoch[1](15400/16220): Loss: 0.2394
lossMSE: 0.0330948568880558 lossSSIM: 0.8734418749809265
===> Epoch[1](15450/16220): Loss: 0.2432
lossMSE: 0.03323718532919884 lossSSIM: 0.8579556345939636
===> Epoch[1](15500/16220): Loss: 0.2394
lossMSE: 0.033483587205410004 lossSSIM: 0.877306342124939
===> Epoch[1](15550/16220): Loss: 0.2444
lossMSE: 0.03265509381890297 lossSSIM: 0.8686185479164124
===> Epoch[1](15600/16220): Loss: 0.2416
lossMSE: 0.03401876986026764 lossSSIM: 0.8755861520767212
===> Epoch[1](15650/16220): Loss: 0.2444
lossMSE: 0.034223202615976334 lossSSIM: 0.8711695671081543
===> Epoch[1](15700/16220): Loss: 0.2435
lossMSE: 0.0339541919529438 lossSSIM: 0.8843709230422974
===> Epoch[1](15750/16220): Loss: 0.2466
lossMSE: 0.03180249407887459 lossSSIM: 0.8698527812957764
===> Epoch[1](15800/16220): Loss: 0.2413
lossMSE: 0.03183147683739662 lossSSIM: 0.8772406578063965
===> Epoch[1](15850/16220): Loss: 0.2432
lossMSE: 0.032186321914196014 lossSSIM: 0.8466920852661133
===> Epoch[1](15900/16220): Loss: 0.2358
lossMSE: 0.03366061672568321 lossSSIM: 0.8737857937812805
===> Epoch[1](15950/16220): Loss: 0.2437
lossMSE: 0.030511021614074707 lossSSIM: 0.8638906478881836
===> Epoch[1](16000/16220): Loss: 0.2389
lossMSE: 0.03157674893736839 lossSSIM: 0.8770731091499329
===> Epoch[1](16050/16220): Loss: 0.2430
lossMSE: 0.031402815133333206 lossSSIM: 0.8640963435173035
===> Epoch[1](16100/16220): Loss: 0.2396
lossMSE: 0.028966467827558517 lossSSIM: 0.8466539978981018
===> Epoch[1](16150/16220): Loss: 0.2334
lossMSE: 0.029605038464069366 lossSSIM: 0.8415248394012451
===> Epoch[1](16200/16220): Loss: 0.2326
===> Epoch 1 Complete: Avg. Loss: 0.3070
lossMSE: 0.030173631384968758 lossSSIM: 0.8777409791946411
===> Epoch[2](0/16220): Loss: 0.2421
lossMSE: 0.030930455774068832 lossSSIM: 0.8431317806243896
===> Epoch[2](50/16220): Loss: 0.2340
lossMSE: 0.030471431091427803 lossSSIM: 0.8674734830856323
===> Epoch[2](100/16220): Loss: 0.2397
lossMSE: 0.030531125143170357 lossSSIM: 0.8713933229446411
===> Epoch[2](150/16220): Loss: 0.2407
lossMSE: 0.027966786175966263 lossSSIM: 0.8380147218704224
===> Epoch[2](200/16220): Loss: 0.2305
lossMSE: 0.0311038289219141 lossSSIM: 0.8682136535644531
===> Epoch[2](250/16220): Loss: 0.2404
lossMSE: 0.029899660497903824 lossSSIM: 0.8692314028739929
===> Epoch[2](300/16220): Loss: 0.2397
lossMSE: 0.028449006378650665 lossSSIM: 0.8579916954040527
===> Epoch[2](350/16220): Loss: 0.2358
lossMSE: 0.028643175959587097 lossSSIM: 0.8601185083389282
===> Epoch[2](400/16220): Loss: 0.2365
lossMSE: 0.027837544679641724 lossSSIM: 0.8570674061775208
===> Epoch[2](450/16220): Loss: 0.2351
lossMSE: 0.03171335905790329 lossSSIM: 0.8713021278381348
===> Epoch[2](500/16220): Loss: 0.2416
lossMSE: 0.03244945406913757 lossSSIM: 0.8563909530639648
===> Epoch[2](550/16220): Loss: 0.2384
lossMSE: 0.02863314189016819 lossSSIM: 0.838603138923645
===> Epoch[2](600/16220): Loss: 0.2311
lossMSE: 0.03010275587439537 lossSSIM: 0.8595458269119263
===> Epoch[2](650/16220): Loss: 0.2375
lossMSE: 0.028056679293513298 lossSSIM: 0.8588104844093323
===> Epoch[2](700/16220): Loss: 0.2357
lossMSE: 0.029201852157711983 lossSSIM: 0.8627672791481018
===> Epoch[2](750/16220): Loss: 0.2376
lossMSE: 0.027453234419226646 lossSSIM: 0.8545235395431519
===> Epoch[2](800/16220): Loss: 0.2342
lossMSE: 0.027857424691319466 lossSSIM: 0.8530617952346802
===> Epoch[2](850/16220): Loss: 0.2342
lossMSE: 0.031360141932964325 lossSSIM: 0.8694453239440918
===> Epoch[2](900/16220): Loss: 0.2409
lossMSE: 0.02955540642142296 lossSSIM: 0.8436737060546875
===> Epoch[2](950/16220): Loss: 0.2331
lossMSE: 0.02830513007938862 lossSSIM: 0.8498611450195312
===> Epoch[2](1000/16220): Loss: 0.2337
lossMSE: 0.02983824349939823 lossSSIM: 0.8473303914070129
===> Epoch[2](1050/16220): Loss: 0.2342
lossMSE: 0.027426576241850853 lossSSIM: 0.8496387004852295
===> Epoch[2](1100/16220): Loss: 0.2330
lossMSE: 0.027533547952771187 lossSSIM: 0.8643291592597961
===> Epoch[2](1150/16220): Loss: 0.2367
lossMSE: 0.02767127938568592 lossSSIM: 0.8593026399612427
===> Epoch[2](1200/16220): Loss: 0.2356
lossMSE: 0.025288468226790428 lossSSIM: 0.8370762467384338
===> Epoch[2](1250/16220): Loss: 0.2282
lossMSE: 0.027026381343603134 lossSSIM: 0.8551502823829651
===> Epoch[2](1300/16220): Loss: 0.2341
lossMSE: 0.025957420468330383 lossSSIM: 0.8380686640739441
===> Epoch[2](1350/16220): Loss: 0.2290
lossMSE: 0.02485593780875206 lossSSIM: 0.844122052192688
===> Epoch[2](1400/16220): Loss: 0.2297
lossMSE: 0.024409905076026917 lossSSIM: 0.8286402225494385
===> Epoch[2](1450/16220): Loss: 0.2255
lossMSE: 0.02915984019637108 lossSSIM: 0.8461967706680298
===> Epoch[2](1500/16220): Loss: 0.2334
lossMSE: 0.02546299807727337 lossSSIM: 0.8469189405441284
===> Epoch[2](1550/16220): Loss: 0.2308
lossMSE: 0.024532685056328773 lossSSIM: 0.8317540884017944
===> Epoch[2](1600/16220): Loss: 0.2263
lossMSE: 0.026263190433382988 lossSSIM: 0.8316704034805298
===> Epoch[2](1650/16220): Loss: 0.2276
lossMSE: 0.027205416932702065 lossSSIM: 0.8448734283447266
===> Epoch[2](1700/16220): Loss: 0.2316
lossMSE: 0.0245179645717144 lossSSIM: 0.8352552652359009
===> Epoch[2](1750/16220): Loss: 0.2272
lossMSE: 0.023996174335479736 lossSSIM: 0.8392578363418579
===> Epoch[2](1800/16220): Loss: 0.2278
lossMSE: 0.02480817586183548 lossSSIM: 0.8294501304626465
===> Epoch[2](1850/16220): Loss: 0.2260
lossMSE: 0.027913812547922134 lossSSIM: 0.8422048687934875
===> Epoch[2](1900/16220): Loss: 0.2315
lossMSE: 0.023603761568665504 lossSSIM: 0.8412968516349792
===> Epoch[2](1950/16220): Loss: 0.2280
lossMSE: 0.0241641104221344 lossSSIM: 0.8266854882240295
===> Epoch[2](2000/16220): Loss: 0.2248
lossMSE: 0.027603967115283012 lossSSIM: 0.8482260704040527
===> Epoch[2](2050/16220): Loss: 0.2328
lossMSE: 0.02455187402665615 lossSSIM: 0.8382814526557922
===> Epoch[2](2100/16220): Loss: 0.2280
lossMSE: 0.023210439831018448 lossSSIM: 0.8245431780815125
===> Epoch[2](2150/16220): Loss: 0.2235
lossMSE: 0.022990135475993156 lossSSIM: 0.8257988691329956
===> Epoch[2](2200/16220): Loss: 0.2237
lossMSE: 0.02322404831647873 lossSSIM: 0.8341339826583862
===> Epoch[2](2250/16220): Loss: 0.2260
lossMSE: 0.023935703560709953 lossSSIM: 0.8274778127670288
===> Epoch[2](2300/16220): Loss: 0.2248
lossMSE: 0.022866904735565186 lossSSIM: 0.8431301116943359
===> Epoch[2](2350/16220): Loss: 0.2279
lossMSE: 0.022955309599637985 lossSSIM: 0.8234879374504089
===> Epoch[2](2400/16220): Loss: 0.2231
lossMSE: 0.02359224297106266 lossSSIM: 0.8136572241783142
===> Epoch[2](2450/16220): Loss: 0.2211
lossMSE: 0.023503288626670837 lossSSIM: 0.8289226293563843
===> Epoch[2](2500/16220): Loss: 0.2249
lossMSE: 0.022410040721297264 lossSSIM: 0.8198341131210327
===> Epoch[2](2550/16220): Loss: 0.2218
lossMSE: 0.02413100376725197 lossSSIM: 0.8363602757453918
===> Epoch[2](2600/16220): Loss: 0.2272
lossMSE: 0.02239532396197319 lossSSIM: 0.8358902931213379
===> Epoch[2](2650/16220): Loss: 0.2258
lossMSE: 0.025304997339844704 lossSSIM: 0.8191295862197876
===> Epoch[2](2700/16220): Loss: 0.2238
lossMSE: 0.030258934944868088 lossSSIM: 0.8365751504898071
===> Epoch[2](2750/16220): Loss: 0.2318
lossMSE: 0.02355758473277092 lossSSIM: 0.838396430015564
===> Epoch[2](2800/16220): Loss: 0.2273
lossMSE: 0.02303125523030758 lossSSIM: 0.841461181640625
===> Epoch[2](2850/16220): Loss: 0.2276
lossMSE: 0.02403472550213337 lossSSIM: 0.8317714333534241
===> Epoch[2](2900/16220): Loss: 0.2260
lossMSE: 0.02685675211250782 lossSSIM: 0.8371344208717346
===> Epoch[2](2950/16220): Loss: 0.2294
lossMSE: 0.026746071875095367 lossSSIM: 0.8087418675422668
===> Epoch[2](3000/16220): Loss: 0.2222
lossMSE: 0.02304859459400177 lossSSIM: 0.8229410648345947
===> Epoch[2](3050/16220): Loss: 0.2230
lossMSE: 0.025054916739463806 lossSSIM: 0.7975653409957886
===> Epoch[2](3100/16220): Loss: 0.2182
lossMSE: 0.024994730949401855 lossSSIM: 0.805635929107666
===> Epoch[2](3150/16220): Loss: 0.2202
lossMSE: 0.021762724965810776 lossSSIM: 0.8412875533103943
===> Epoch[2](3200/16220): Loss: 0.2266
lossMSE: 0.028260519728064537 lossSSIM: 0.8187587261199951
===> Epoch[2](3250/16220): Loss: 0.2259
lossMSE: 0.020554905757308006 lossSSIM: 0.8117772340774536
===> Epoch[2](3300/16220): Loss: 0.2184
lossMSE: 0.021699754521250725 lossSSIM: 0.8086403608322144
===> Epoch[2](3350/16220): Loss: 0.2184
lossMSE: 0.020805541425943375 lossSSIM: 0.8152973651885986
===> Epoch[2](3400/16220): Loss: 0.2194
lossMSE: 0.023187220096588135 lossSSIM: 0.8244279026985168
===> Epoch[2](3450/16220): Loss: 0.2235
lossMSE: 0.021742017939686775 lossSSIM: 0.8370527029037476
===> Epoch[2](3500/16220): Loss: 0.2256
lossMSE: 0.02165713720023632 lossSSIM: 0.8211513757705688
===> Epoch[2](3550/16220): Loss: 0.2215
lossMSE: 0.024824656546115875 lossSSIM: 0.8186765909194946
===> Epoch[2](3600/16220): Loss: 0.2233
lossMSE: 0.020378824323415756 lossSSIM: 0.8181370496749878
===> Epoch[2](3650/16220): Loss: 0.2198
lossMSE: 0.019429627805948257 lossSSIM: 0.8037682175636292
===> Epoch[2](3700/16220): Loss: 0.2155
lossMSE: 0.020536202937364578 lossSSIM: 0.8017641305923462
===> Epoch[2](3750/16220): Loss: 0.2158
lossMSE: 0.024431588128209114 lossSSIM: 0.8075130581855774
===> Epoch[2](3800/16220): Loss: 0.2202
lossMSE: 0.019301140680909157 lossSSIM: 0.800904393196106
===> Epoch[2](3850/16220): Loss: 0.2147
lossMSE: 0.020439457148313522 lossSSIM: 0.7936161756515503
===> Epoch[2](3900/16220): Loss: 0.2137
lossMSE: 0.020431943237781525 lossSSIM: 0.8070644736289978
===> Epoch[2](3950/16220): Loss: 0.2171
lossMSE: 0.02035445161163807 lossSSIM: 0.8046256899833679
===> Epoch[2](4000/16220): Loss: 0.2164
lossMSE: 0.02221965231001377 lossSSIM: 0.801803708076477
===> Epoch[2](4050/16220): Loss: 0.2171
lossMSE: 0.020945962518453598 lossSSIM: 0.7994617223739624
===> Epoch[2](4100/16220): Loss: 0.2156
lossMSE: 0.022257359698414803 lossSSIM: 0.8000481128692627
===> Epoch[2](4150/16220): Loss: 0.2167
lossMSE: 0.019908566027879715 lossSSIM: 0.7974843978881836
===> Epoch[2](4200/16220): Loss: 0.2143
lossMSE: 0.019918061792850494 lossSSIM: 0.7727338075637817
===> Epoch[2](4250/16220): Loss: 0.2081
lossMSE: 0.020059233531355858 lossSSIM: 0.7944939732551575
===> Epoch[2](4300/16220): Loss: 0.2137
lossMSE: 0.018968740478157997 lossSSIM: 0.7949860692024231
===> Epoch[2](4350/16220): Loss: 0.2130
lossMSE: 0.020785976201295853 lossSSIM: 0.7994130849838257
===> Epoch[2](4400/16220): Loss: 0.2154
lossMSE: 0.02024868130683899 lossSSIM: 0.793297290802002
===> Epoch[2](4450/16220): Loss: 0.2135
lossMSE: 0.02030525915324688 lossSSIM: 0.7970929145812988
===> Epoch[2](4500/16220): Loss: 0.2145
lossMSE: 0.01964847929775715 lossSSIM: 0.7850748896598816
===> Epoch[2](4550/16220): Loss: 0.2110
lossMSE: 0.020350394770503044 lossSSIM: 0.785161554813385
===> Epoch[2](4600/16220): Loss: 0.2116
lossMSE: 0.019774185493588448 lossSSIM: 0.792751133441925
===> Epoch[2](4650/16220): Loss: 0.2130
lossMSE: 0.018884046003222466 lossSSIM: 0.8055228590965271
===> Epoch[2](4700/16220): Loss: 0.2155
lossMSE: 0.01830742321908474 lossSSIM: 0.7891098260879517
===> Epoch[2](4750/16220): Loss: 0.2110
lossMSE: 0.018183570355176926 lossSSIM: 0.7842313051223755
===> Epoch[2](4800/16220): Loss: 0.2097
lossMSE: 0.01911487989127636 lossSSIM: 0.7867437601089478
===> Epoch[2](4850/16220): Loss: 0.2110
lossMSE: 0.02029820717871189 lossSSIM: 0.7658153176307678
===> Epoch[2](4900/16220): Loss: 0.2067
lossMSE: 0.018687404692173004 lossSSIM: 0.7738770246505737
===> Epoch[2](4950/16220): Loss: 0.2075
lossMSE: 0.019674386829137802 lossSSIM: 0.7711533904075623
===> Epoch[2](5000/16220): Loss: 0.2075
lossMSE: 0.021605154499411583 lossSSIM: 0.7761431336402893
===> Epoch[2](5050/16220): Loss: 0.2102
lossMSE: 0.020444335415959358 lossSSIM: 0.7697015404701233
===> Epoch[2](5100/16220): Loss: 0.2078
lossMSE: 0.017309654504060745 lossSSIM: 0.7853811979293823
===> Epoch[2](5150/16220): Loss: 0.2093
lossMSE: 0.018705226480960846 lossSSIM: 0.7630137205123901
===> Epoch[2](5200/16220): Loss: 0.2048
lossMSE: 0.01795630156993866 lossSSIM: 0.7769831418991089
===> Epoch[2](5250/16220): Loss: 0.2077
lossMSE: 0.025479286909103394 lossSSIM: 0.7851461172103882
===> Epoch[2](5300/16220): Loss: 0.2154
lossMSE: 0.018477097153663635 lossSSIM: 0.7645195126533508
===> Epoch[2](5350/16220): Loss: 0.2050
lossMSE: 0.01857319287955761 lossSSIM: 0.7660896182060242
===> Epoch[2](5400/16220): Loss: 0.2055
lossMSE: 0.01817423291504383 lossSSIM: 0.7831676006317139
===> Epoch[2](5450/16220): Loss: 0.2094
lossMSE: 0.017395177856087685 lossSSIM: 0.7541402578353882
===> Epoch[2](5500/16220): Loss: 0.2016
lossMSE: 0.017738349735736847 lossSSIM: 0.7780090570449829
===> Epoch[2](5550/16220): Loss: 0.2078
lossMSE: 0.016476109623908997 lossSSIM: 0.7455440759658813
===> Epoch[2](5600/16220): Loss: 0.1987
lossMSE: 0.022518690675497055 lossSSIM: 0.7968341708183289
===> Epoch[2](5650/16220): Loss: 0.2161
lossMSE: 0.019587956368923187 lossSSIM: 0.7671903371810913
===> Epoch[2](5700/16220): Loss: 0.2065
lossMSE: 0.02141912467777729 lossSSIM: 0.7596938610076904
===> Epoch[2](5750/16220): Loss: 0.2060
lossMSE: 0.018908660858869553 lossSSIM: 0.7482689619064331
===> Epoch[2](5800/16220): Loss: 0.2012
lossMSE: 0.01796863041818142 lossSSIM: 0.7585229873657227
===> Epoch[2](5850/16220): Loss: 0.2031
lossMSE: 0.01836540922522545 lossSSIM: 0.7615131139755249
===> Epoch[2](5900/16220): Loss: 0.2042
lossMSE: 0.016752902418375015 lossSSIM: 0.7428121566772461
===> Epoch[2](5950/16220): Loss: 0.1983
lossMSE: 0.01711484231054783 lossSSIM: 0.7563205361366272
===> Epoch[2](6000/16220): Loss: 0.2019
lossMSE: 0.01858917437493801 lossSSIM: 0.768128514289856
===> Epoch[2](6050/16220): Loss: 0.2060
lossMSE: 0.017301391810178757 lossSSIM: 0.7539571523666382
===> Epoch[2](6100/16220): Loss: 0.2015
lossMSE: 0.018955839797854424 lossSSIM: 0.7806985378265381
===> Epoch[2](6150/16220): Loss: 0.2094
lossMSE: 0.016789084300398827 lossSSIM: 0.7525479793548584
===> Epoch[2](6200/16220): Loss: 0.2007
lossMSE: 0.018058937042951584 lossSSIM: 0.7536771893501282
===> Epoch[2](6250/16220): Loss: 0.2020
lossMSE: 0.017697887495160103 lossSSIM: 0.7242639064788818
===> Epoch[2](6300/16220): Loss: 0.1943
lossMSE: 0.022394875064492226 lossSSIM: 0.7582740187644958
===> Epoch[2](6350/16220): Loss: 0.2064
lossMSE: 0.017381325364112854 lossSSIM: 0.7539976835250854
===> Epoch[2](6400/16220): Loss: 0.2015
lossMSE: 0.020868152379989624 lossSSIM: 0.7353285551071167
===> Epoch[2](6450/16220): Loss: 0.1995
lossMSE: 0.01801382005214691 lossSSIM: 0.7617102861404419
===> Epoch[2](6500/16220): Loss: 0.2039
lossMSE: 0.021025560796260834 lossSSIM: 0.7368923425674438
===> Epoch[2](6550/16220): Loss: 0.2000
lossMSE: 0.019476817920804024 lossSSIM: 0.7262490391731262
===> Epoch[2](6600/16220): Loss: 0.1962
lossMSE: 0.01688232086598873 lossSSIM: 0.7452914118766785
===> Epoch[2](6650/16220): Loss: 0.1990
lossMSE: 0.018327681347727776 lossSSIM: 0.7180651426315308
===> Epoch[2](6700/16220): Loss: 0.1933
lossMSE: 0.016262274235486984 lossSSIM: 0.7391223907470703
===> Epoch[2](6750/16220): Loss: 0.1970
lossMSE: 0.018881598487496376 lossSSIM: 0.7560044527053833
===> Epoch[2](6800/16220): Loss: 0.2032
lossMSE: 0.016152452677488327 lossSSIM: 0.7350767254829407
===> Epoch[2](6850/16220): Loss: 0.1959
lossMSE: 0.02016540616750717 lossSSIM: 0.7388991117477417
===> Epoch[2](6900/16220): Loss: 0.1998
lossMSE: 0.018155207857489586 lossSSIM: 0.7453721761703491
===> Epoch[2](6950/16220): Loss: 0.2000
lossMSE: 0.01696624606847763 lossSSIM: 0.719688355922699
===> Epoch[2](7000/16220): Loss: 0.1926
lossMSE: 0.020538808777928352 lossSSIM: 0.7262316942214966
===> Epoch[2](7050/16220): Loss: 0.1970
lossMSE: 0.018084466457366943 lossSSIM: 0.7200335264205933
===> Epoch[2](7100/16220): Loss: 0.1936
lossMSE: 0.016637571156024933 lossSSIM: 0.70586758852005
===> Epoch[2](7150/16220): Loss: 0.1889
lossMSE: 0.015857093036174774 lossSSIM: 0.7140599489212036
===> Epoch[2](7200/16220): Loss: 0.1904
lossMSE: 0.01730225421488285 lossSSIM: 0.7169973850250244
===> Epoch[2](7250/16220): Loss: 0.1922
lossMSE: 0.016244500875473022 lossSSIM: 0.700667142868042
===> Epoch[2](7300/16220): Loss: 0.1874
lossMSE: 0.017204927280545235 lossSSIM: 0.7069051265716553
===> Epoch[2](7350/16220): Loss: 0.1896
lossMSE: 0.019714606925845146 lossSSIM: 0.7037568092346191
===> Epoch[2](7400/16220): Loss: 0.1907
lossMSE: 0.015786638483405113 lossSSIM: 0.6904487609863281
===> Epoch[2](7450/16220): Loss: 0.1845
lossMSE: 0.015422644093632698 lossSSIM: 0.699728786945343
===> Epoch[2](7500/16220): Loss: 0.1865
lossMSE: 0.01881636679172516 lossSSIM: 0.7188265323638916
===> Epoch[2](7550/16220): Loss: 0.1938
lossMSE: 0.015912067145109177 lossSSIM: 0.7134228348731995
===> Epoch[2](7600/16220): Loss: 0.1903
lossMSE: 0.023336242884397507 lossSSIM: 0.7198267579078674
===> Epoch[2](7650/16220): Loss: 0.1975
lossMSE: 0.016507703810930252 lossSSIM: 0.7004300355911255
===> Epoch[2](7700/16220): Loss: 0.1875
lossMSE: 0.017254449427127838 lossSSIM: 0.6949708461761475
===> Epoch[2](7750/16220): Loss: 0.1867
lossMSE: 0.01591167226433754 lossSSIM: 0.696165919303894
===> Epoch[2](7800/16220): Loss: 0.1860
lossMSE: 0.017967266961932182 lossSSIM: 0.7142036557197571
===> Epoch[2](7850/16220): Loss: 0.1920
lossMSE: 0.015323282219469547 lossSSIM: 0.7051680684089661
===> Epoch[2](7900/16220): Loss: 0.1878
lossMSE: 0.015044511295855045 lossSSIM: 0.7036470174789429
===> Epoch[2](7950/16220): Loss: 0.1872
lossMSE: 0.015326328575611115 lossSSIM: 0.6974912881851196
===> Epoch[2](8000/16220): Loss: 0.1859
lossMSE: 0.015845641493797302 lossSSIM: 0.6829164028167725
===> Epoch[2](8050/16220): Loss: 0.1826
lossMSE: 0.016562936827540398 lossSSIM: 0.7223000526428223
===> Epoch[2](8100/16220): Loss: 0.1930
lossMSE: 0.015689939260482788 lossSSIM: 0.6950780749320984
===> Epoch[2](8150/16220): Loss: 0.1855
lossMSE: 0.01633082889020443 lossSSIM: 0.70774245262146
===> Epoch[2](8200/16220): Loss: 0.1892
lossMSE: 0.01694428361952305 lossSSIM: 0.6917065382003784
===> Epoch[2](8250/16220): Loss: 0.1856
lossMSE: 0.01795309968292713 lossSSIM: 0.6837470531463623
===> Epoch[2](8300/16220): Loss: 0.1844
lossMSE: 0.016096487641334534 lossSSIM: 0.6893486380577087
===> Epoch[2](8350/16220): Loss: 0.1844
lossMSE: 0.01589295268058777 lossSSIM: 0.6789833307266235
===> Epoch[2](8400/16220): Loss: 0.1817
lossMSE: 0.015148310922086239 lossSSIM: 0.6907322406768799
===> Epoch[2](8450/16220): Loss: 0.1840
lossMSE: 0.017775455489754677 lossSSIM: 0.690376877784729
===> Epoch[2](8500/16220): Loss: 0.1859
lossMSE: 0.01717870682477951 lossSSIM: 0.689957320690155
===> Epoch[2](8550/16220): Loss: 0.1854
lossMSE: 0.015973102301359177 lossSSIM: 0.6569792628288269
===> Epoch[2](8600/16220): Loss: 0.1762
lossMSE: 0.018672440201044083 lossSSIM: 0.6830126047134399
===> Epoch[2](8650/16220): Loss: 0.1848