-
Notifications
You must be signed in to change notification settings - Fork 242
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add `CLIPVisionEmbedding` * Add `CLIPBackbone` and `CLIPVisionEncoder` and `CLIPImageConverter` * Fix typo
- Loading branch information
1 parent
a45110e
commit 9238b06
Showing
8 changed files
with
511 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
import math | ||
|
||
from keras import layers | ||
from keras import ops | ||
|
||
from keras_hub.src.api_export import keras_hub_export | ||
from keras_hub.src.models.backbone import Backbone | ||
|
||
|
||
class CLIPVisionPooler(layers.Layer): | ||
"""The vision pooler layer of CLIP. | ||
`CLIPVisionPooler` will extracts the first token (index `0`) from the | ||
sequence of the vision embeddings as the pooled outputs. | ||
Call arguments: | ||
vision_embeddings: A tensor of shape | ||
`(batch_size, sequence_length, hidden_dim)`. | ||
""" | ||
|
||
def call(self, vision_embeddings): | ||
pooled_outputs = vision_embeddings[:, 0, :] | ||
return pooled_outputs | ||
|
||
|
||
class CLIPTextPooler(layers.Layer): | ||
"""The text pooler layer of CLIP. | ||
`CLIPTextPooler` extracts the text embeddings at the positions of EOS tokens | ||
as the pooled outputs. | ||
Call arguments: | ||
text_embeddings: A tensor of shape | ||
`(batch_size, sequence_length, hidden_dim)`. | ||
token_ids: A tensor of shape `(batch_size, max_tokens)`, used to | ||
identify the positions of EOS tokens. | ||
""" | ||
|
||
def call(self, text_embeddings, token_ids): | ||
eos_index = ops.argmax(token_ids, axis=-1, keepdims=True) | ||
eos_index = ops.expand_dims(eos_index, axis=-1) | ||
pooled_outputs = ops.take_along_axis(text_embeddings, eos_index, axis=1) | ||
pooled_outputs = ops.squeeze(pooled_outputs, axis=1) | ||
return pooled_outputs | ||
|
||
|
||
class CLIPHead(layers.Layer): | ||
"""The head layer of CLIP. | ||
`CLIPHead` takes `vision_embedding` and `text_embedding` as inputs to | ||
compute the corresponding logits. Both embeddings are L2 normalized and used | ||
to compute pairwise cosine similarity. The resulting logits are then scaled | ||
by a learnable `logit_scale` parameter. | ||
Call arguments: | ||
vision_embedding: A tensor of shape `(batch_size, hidden_dim)`. | ||
text_embedding: A tensor of shape `(batch_size, hidden_dim)`. | ||
""" | ||
|
||
def build(self, input_shape): | ||
self.logit_scale = self.add_weight( | ||
shape=(), | ||
initializer=lambda *a, **kw: math.log(1 / 0.07), | ||
trainable=True, | ||
dtype=self.variable_dtype, | ||
name="logit_scale", | ||
) | ||
|
||
def call(self, vision_embedding, text_embedding): | ||
normalized_vision_embedding = ops.sqrt( | ||
ops.sum(ops.power(vision_embedding, 2), axis=-1, keepdims=True) | ||
) | ||
normalized_text_embedding = ops.sqrt( | ||
ops.sum(ops.power(text_embedding, 2), axis=-1, keepdims=True) | ||
) | ||
vision_embedding = vision_embedding / normalized_vision_embedding | ||
text_embedding = text_embedding / normalized_text_embedding | ||
logit_scale = ops.exp(self.logit_scale) | ||
text_logits = ( | ||
ops.matmul( | ||
text_embedding, | ||
ops.transpose(vision_embedding), | ||
) | ||
* logit_scale | ||
) | ||
vision_logits = ops.transpose(text_logits) | ||
return vision_logits, text_logits | ||
|
||
|
||
@keras_hub_export("keras_hub.models.CLIPBackbone") | ||
class CLIPBackbone(Backbone): | ||
"""CLIP core network with hyperparameters. | ||
This backbone implements the base architecture for Contrastive | ||
Language-Image Pretraining (CLIP) model. It includes a vision and text | ||
encoders and the corresponding projection layers. This backbone will output | ||
the final logit scores corresponding to each image and token input. These | ||
values are cosine similarities between the corresponding image and text | ||
features. | ||
The default constructor gives a fully customizable, randomly initialized | ||
CLIP model with any number of layers, heads, and embedding dimensions. To | ||
load preset architectures and weights, use the `from_preset` constructor. | ||
Args: | ||
vision_encoder: The CLIP vision encoder for encoding the input images. | ||
text_encoder: The CLIP text encoder for encoding the input tokens. | ||
projection_dim: int. The size of the projection layer. | ||
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use | ||
for the models computations and weights. Note that some | ||
computations, such as softmax and layer normalization will always | ||
be done a float32 precision regardless of dtype. | ||
Example: | ||
```python | ||
input_data = { | ||
"images": np.ones(shape=(1, 224, 224, 3), dtype="float32"), | ||
"token_ids": np.ones(shape=(1, 12), dtype="int32"), | ||
} | ||
# Pretrained CLIP model. | ||
model = keras_hub.models.CLIPBackbone.from_preset("clip-vit-base-patch32") | ||
model(input_data) | ||
# Randomly initialized CLIP model with custom config. | ||
vision_encoder = keras_hub.models.CLIPVisionEncoder( | ||
patch_size=32, | ||
hidden_dim=768, | ||
num_layers=8, | ||
num_heads=8, | ||
intermediate_dim=2048, | ||
image_shape=(384, 384, 3), | ||
) | ||
text_encoder = keras_hub.models.CLIPTextEncoder( | ||
vocabulary_size=49408, | ||
embedding_dim=768, | ||
hidden_dim=768, | ||
num_layers=8, | ||
num_heads=8, | ||
intermediate_dim=2048, | ||
) | ||
model = keras_hub.models.CLIPBackbone( | ||
vision_encoder=50257, | ||
text_encoder=12, | ||
projection_dim=256, | ||
) | ||
model(input_data) | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
vision_encoder, | ||
text_encoder, | ||
projection_dim, | ||
dtype=None, | ||
name=None, | ||
**kwargs, | ||
): | ||
# === Layers === | ||
self.vision_encoder = vision_encoder | ||
self.text_encoder = text_encoder | ||
self.vision_pooler = CLIPVisionPooler(dtype=dtype, name="vision_pooler") | ||
self.text_pooler = CLIPTextPooler(dtype=dtype, name="text_pooler") | ||
self.vision_projection = layers.Dense( | ||
projection_dim, | ||
use_bias=False, | ||
dtype=dtype, | ||
name="vision_projection", | ||
) | ||
self.text_projection = layers.Dense( | ||
projection_dim, | ||
use_bias=False, | ||
dtype=dtype, | ||
name="text_projection", | ||
) | ||
self.clip_head = CLIPHead(dtype=dtype, name="clip_head") | ||
|
||
# === Functional Model === | ||
image_input = layers.Input( | ||
shape=self.vision_encoder.image_shape, name="images" | ||
) | ||
token_id_input = layers.Input( | ||
shape=(None,), dtype="int32", name="token_ids" | ||
) | ||
vision_outputs = self.vision_encoder({"images": image_input}) | ||
text_outputs = self.text_encoder({"token_ids": token_id_input}) | ||
vision_outputs = self.vision_pooler(vision_outputs) | ||
text_outputs = self.text_pooler(text_outputs, token_id_input) | ||
vision_embeddings = self.vision_projection(vision_outputs) | ||
text_embeddings = self.text_projection(text_outputs) | ||
vision_logits, text_logits = self.clip_head( | ||
vision_embeddings, text_embeddings | ||
) | ||
|
||
super().__init__( | ||
inputs={ | ||
"images": image_input, | ||
"token_ids": token_id_input, | ||
}, | ||
outputs={ | ||
"vision_logits": vision_logits, | ||
"text_logits": text_logits, | ||
}, | ||
name=name, | ||
**kwargs, | ||
) | ||
|
||
# === Config === | ||
self.projection_dim = projection_dim | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update( | ||
{ | ||
"vision_encoder": layers.serialize(self.vision_encoder), | ||
"text_encoder": layers.serialize(self.text_encoder), | ||
"projection_dim": self.projection_dim, | ||
} | ||
) | ||
return config | ||
|
||
@classmethod | ||
def from_config(cls, config, custom_objects=None): | ||
config = config.copy() | ||
|
||
# Propagate `dtype` to submodels if needed. | ||
if "dtype" in config and config["dtype"] is not None: | ||
dtype_config = config["dtype"] | ||
if "dtype" not in config["vision_encoder"]["config"]: | ||
config["vision_encoder"]["config"]["dtype"] = dtype_config | ||
if "dtype" not in config["text_encoder"]["config"]: | ||
config["text_encoder"]["config"]["dtype"] = dtype_config | ||
|
||
# We expect submodels to be instantiated. | ||
config["vision_encoder"] = layers.deserialize( | ||
config["vision_encoder"], custom_objects=custom_objects | ||
) | ||
config["text_encoder"] = layers.deserialize( | ||
config["text_encoder"], custom_objects=custom_objects | ||
) | ||
return cls(**config) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
from keras_hub.src.api_export import keras_hub_export | ||
from keras_hub.src.layers.preprocessing.image_converter import ImageConverter | ||
from keras_hub.src.models.clip.clip_backbone import CLIPBackbone | ||
|
||
|
||
@keras_hub_export("keras_hub.layers.CLIPImageConverter") | ||
class CLIPImageConverter(ImageConverter): | ||
backbone_cls = CLIPBackbone |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.