Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add FalconBackbone #1475

Merged
merged 16 commits into from
Mar 1, 2024
13 changes: 13 additions & 0 deletions keras_nlp/models/falcon/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
156 changes: 156 additions & 0 deletions keras_nlp/models/falcon/falcon_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

from keras_nlp.backend import keras
from keras_nlp.backend import ops


class FalconAttention(keras.layers.Layer):
def __init__(
self,
num_heads,
attention_dropout_rate,
**kwargs,
):
super().__init__(**kwargs)
self.num_heads = num_heads
self.attention_dropout_rate = attention_dropout_rate

def build(self, inputs_shape):
# Einsum variables:
# b = batch size
# q = query length
# m = model dim
# n = num attention heads
# h = head dim
# k = key/value length

batch_size, seq_length, hidden_dim = inputs_shape

self.head_dim = hidden_dim // self.num_heads

# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)

self.query_dense = keras.layers.EinsumDense(
equation="bqm,mnh->bqnh",
output_shape=(None, self.num_heads, self.head_dim),
bias_axes="nh",
dtype=self.dtype_policy,
name="query_dense",
)
self.query_dense.build(inputs_shape)

self.key_dense = keras.layers.EinsumDense(
equation="bkm,mnh->bknh",
output_shape=(None, self.num_heads, self.head_dim),
bias_axes="nh",
dtype=self.dtype_policy,
name="key_dense",
)
self.key_dense.build(inputs_shape)

self.value_dense = keras.layers.EinsumDense(
equation="bkm,mnh->bknh",
output_shape=(None, self.num_heads, self.head_dim),
bias_axes="nh",
dtype=self.dtype_policy,
name="value_dense",
)
self.value_dense.build(inputs_shape)

self.attention_dropout = keras.layers.Dropout(
rate=self.attention_dropout_rate,
dtype=self.dtype_policy,
name="attention_dropout",
)

self.output_dense = keras.layers.Dense(
hidden_dim,
dtype=self.dtype_policy,
name="output_dense",
)
self.output_dense.build(inputs_shape)

self.softmax = keras.layers.Softmax(dtype="float32", name="softmax")

self.built = True

def call(
self,
inputs,
alibi,
attention_mask=None,
cache=None,
cache_update_index=None,
):
batch_size, seq_length, hidden_dim = ops.shape(inputs)

query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)

if cache is not None:
key_cache = cache[:, 0, ...]
value_cache = cache[:, 1, ...]
if cache_update_index is None:
key = key_cache
value = value_cache
else:
start = [0, cache_update_index, 0, 0]
key = ops.slice_update(key_cache, start, key)
value = ops.slice_update(value_cache, start, value)
cache = ops.stack((key, value), axis=1)
else:
if cache_update_index is not None:
raise ValueError(
"`cache_update_index` should not be set if `cache` is "
f"`None`. Received: cache={cache}, "
f"cache_update_index={cache_update_index}"
)

attention_scores = ops.einsum("bqnh,bknh->bnqk", query, key)
attention_scores = ops.add(attention_scores, alibi)
attention_scores = (
attention_scores * self.inv_norm_factor
) # [batch_size, num_heads, query_length, kv_length]
attention_scores = self.softmax(
attention_scores, ops.expand_dims(attention_mask, 1)
)
attention_scores = self.attention_dropout(attention_scores)
attention_output = ops.einsum(
"bnqk,bknh->bqnh", attention_scores, value
)
attention_output = ops.reshape(
attention_output,
[batch_size, seq_length, self.num_heads * self.head_dim],
) # [batch_size, query_length, hidden_dim]

attention_output = self.output_dense(attention_output)

if cache is not None:
return attention_output, cache

return attention_output

def get_config(self):
config = super().get_config()
config.update(
{
"num_heads": self.num_heads,
"attention_dropout_rate": self.attention_dropout_rate,
}
)
return config
160 changes: 160 additions & 0 deletions keras_nlp/models/falcon/falcon_backbone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from keras_nlp.api_export import keras_nlp_export
from keras_nlp.backend import keras
from keras_nlp.layers.modeling.reversible_embedding import ReversibleEmbedding
from keras_nlp.models.backbone import Backbone
from keras_nlp.models.falcon.falcon_transformer_decoder import (
FalconTransformerDecoder,
)


@keras_nlp_export("keras_nlp.models.FalconBackbone")
class FalconBackbone(Backbone):
"""The Falcon core architecure.
This network implements a Transformer-based decoder-only network,
[Falcon](https://arxiv.org/abs/2306.01116).
Args:
vocabulary_size: int. The size of the token vocabulary.
num_layers: int. The number of transformer layers.
num_attention_heads: int. The number of attention heads for each transformer.
The hidden size must be divisible by the number of attention heads.
hidden_dim: int. The dimensionality of the embeddings and hidden states.
intermediate_dim: int. The output dimension of the first Dense layer in
the MLP network of each transformer.
layer_norm_epsilon: float. Epsilon for the layer normalization layers in
the transformer decoder.
attention_dropout_rate: float. Dropout probability for the attention.
feedforward_dropout_rate: flaot. Dropout probability for the feedforward.
dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use
for model computations and weights. Note that some computations,
such as softmax and layer normalization, will always be done at
float32 precision regardless of dtype.
Examples:
```python
input_data = {
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}
# Pretrained Falcon decoder.
# TODO: Update the preset.
model = keras_nlp.models.FalconBackbone.from_preset("falcon_preset")
model(input_data)
# Randomly initialized Falcon decoder with a custom config.
model = keras_nlp.models.FalconBackbone(
vocabulary_size=10,
num_layers=2,
num_attention_heads=2,
hidden_dim=32,
intermediate_dim=32*4,
layer_norm_epsilon=1e-5,
attention_dropout_rate=0,
feedforward_dropout_rate=0,
dtype="float32",
)
model(input_data)
```
"""

def __init__(
self,
vocabulary_size,
num_layers,
num_attention_heads,
hidden_dim,
intermediate_dim,
layer_norm_epsilon=1e-5,
attention_dropout_rate=0,
feedforward_dropout_rate=0,
dtype=None,
**kwargs,
):
# === Layers ===
self.token_embedding = ReversibleEmbedding(
input_dim=vocabulary_size,
output_dim=hidden_dim,
dtype=dtype,
name="token_embedding",
)

self.transformer_layers = []
for i in range(num_layers):
layer = FalconTransformerDecoder(
num_attention_heads=num_attention_heads,
intermediate_dim=intermediate_dim,
attention_dropout_rate=attention_dropout_rate,
feedforward_dropout_rate=feedforward_dropout_rate,
dtype=dtype,
name=f"transformer_layer_{i}",
)
self.transformer_layers.append(layer)

self.final_layernorm = keras.layers.LayerNormalization(
epsilon=layer_norm_epsilon,
dtype=dtype,
name="final_layernorm",
)

# === Functional Model ===
token_ids = keras.Input(shape=(None,), dtype="int32", name="token_ids")
padding_mask = keras.Input(
shape=(None,), dtype="int32", name="padding_mask"
)
# Embed Tokens.
x = self.token_embedding(token_ids)

# Apply successive transformer decoder blocks.
for transformer_layer in self.transformer_layers:
x = transformer_layer(inputs=x, decoder_padding_mask=padding_mask)
sequence_output = self.final_layernorm(x)

super().__init__(
inputs={
"token_ids": token_ids,
"padding_mask": padding_mask,
},
outputs=sequence_output,
**kwargs,
)

# === Config ===
self.vocabulary_size = vocabulary_size
self.num_layers = num_layers
self.num_attention_heads = num_attention_heads
self.hidden_dim = hidden_dim
self.intermediate_dim = intermediate_dim
self.attention_dropout_rate = attention_dropout_rate
self.feedforward_dropout_rate = feedforward_dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon

def get_config(self):
config = super().get_config()
config.update(
{
"vocabulary_size": self.vocabulary_size,
"num_layers": self.num_layers,
"num_attention_heads": self.num_attention_heads,
"hidden_dim": self.hidden_dim,
"intermediate_dim": self.intermediate_dim,
"attention_dropout_rate": self.attention_dropout_rate,
"feedforward_dropout_rate": self.feedforward_dropout_rate,
"layer_norm_epsilon": self.layer_norm_epsilon,
}
)
return config
49 changes: 49 additions & 0 deletions keras_nlp/models/falcon/falcon_backbone_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from keras_nlp.backend import ops
from keras_nlp.models.falcon.falcon_backbone import FalconBackbone
from keras_nlp.tests.test_case import TestCase


class FalconBackboneTest(TestCase):
def setUp(self):
self.init_kwargs = {
"vocabulary_size": 10,
"num_layers": 2,
"num_attention_heads": 8,
"hidden_dim": 16,
"intermediate_dim": 32,
}
self.input_data = {
"token_ids": ops.ones((2, 5), dtype="int32"),
"padding_mask": ops.ones((2, 5), dtype="int32"),
}

def test_backbone_basics(self):
self.run_backbone_test(
cls=FalconBackbone,
init_kwargs=self.init_kwargs,
input_data=self.input_data,
expected_output_shape=(2, 5, 16),
)

@pytest.mark.large
def test_saved_model(self):
self.run_model_saving_test(
cls=FalconBackbone,
init_kwargs=self.init_kwargs,
input_data=self.input_data,
)
Loading
Loading