Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RetinaNet] Image Converter and ObjectDetector #1906

Open
wants to merge 43 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
43 commits
Select commit Hold shift + click to select a range
c1d7955
Rebased phase 1 changes
sineeli Sep 26, 2024
deaeac4
Rebased phase 1 changes
sineeli Sep 26, 2024
1cdd164
Merge branch 'sineeli/add-retinanet-phase-2' of https://github.com/si…
sineeli Sep 27, 2024
f90add8
nit
sineeli Sep 27, 2024
fb0c733
Merge remote-tracking branch 'upstream/master' into sineeli/add-retin…
sineeli Oct 2, 2024
6c26534
Retina Phase 2
sineeli Oct 3, 2024
baee6e2
nit
sineeli Oct 3, 2024
5ee905e
Expose Anchor Generator as layer, docstring correction and test corre…
sineeli Oct 4, 2024
84533d4
nit
sineeli Oct 4, 2024
b6ceb8f
Add missing args for prediction heads
sineeli Oct 4, 2024
4c7a28b
- Use FeaturePyramidBackbone cls for RetinaNet backbone.
sineeli Oct 8, 2024
3f915dc
fix decoding error
sineeli Oct 8, 2024
f0da549
- Add ground truth arg for RetinaNet model and remove source and targ…
sineeli Oct 8, 2024
05fdefe
nit
sineeli Oct 9, 2024
3b26d3a
Subclass Imageconverter and overload call method for object detection…
sineeli Oct 9, 2024
0df121a
Revert "Subclass Imageconverter and overload call method for object d…
sineeli Oct 9, 2024
8697240
add names to layers
sineeli Oct 9, 2024
394faf0
correct fpn coarser level as per torch retinanet model
sineeli Oct 9, 2024
33d81e9
nit
sineeli Oct 9, 2024
79502d9
Polish Prediction head and fpn layers to include flags and norm layers
sineeli Oct 9, 2024
72a02c4
nit
sineeli Oct 9, 2024
a28a033
nit
sineeli Oct 9, 2024
50686e0
add prior probability flag for prediction head to use it for classifi…
sineeli Oct 9, 2024
8dc5483
compute_shape seems redudant here and correct layers for channels_first
sineeli Oct 9, 2024
9f7d8ef
keep compute_output_shape for fpn
sineeli Oct 9, 2024
6801789
nit
sineeli Oct 10, 2024
7e57cf1
Change AnchorGen Implementation as per torch
sineeli Oct 10, 2024
8ac617c
correct the source format of anchors format
sineeli Oct 10, 2024
03efed5
use plain rescaling and normalization no resizing for od models as it…
sineeli Oct 11, 2024
5704950
use single bbox format for model
sineeli Oct 11, 2024
7c1d1de
- Add arg for encoding format
sineeli Oct 11, 2024
2414f00
make anchor generator optional
sineeli Oct 11, 2024
064c971
init as layers for anchor generator and label encoder and as one more…
sineeli Oct 11, 2024
4ff8f13
nit
sineeli Oct 11, 2024
c4f752d
- only consider levels from min level to backbone maxlevel fro featur…
sineeli Oct 12, 2024
bde84b9
nit
sineeli Oct 12, 2024
caacc99
nit
sineeli Oct 15, 2024
eb555ca
update resizing as per new keras3 resizing layer for bboxes
sineeli Oct 25, 2024
de8233e
Revert "update resizing as per new keras3 resizing layer for bboxes"
sineeli Oct 30, 2024
1ca10b9
Add TODO's for keras bounding box ops
sineeli Oct 30, 2024
5ec65fd
Use keras layers to rescale and normalize
sineeli Nov 4, 2024
dd00bdf
check with plain values
sineeli Nov 4, 2024
581d152
use convert_preprocessing_inputs function for basic operations as bac…
sineeli Nov 4, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions keras_hub/api/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,10 @@
from keras_hub.src.models.resnet.resnet_image_converter import (
ResNetImageConverter,
)
from keras_hub.src.models.retinanet.anchor_generator import AnchorGenerator
from keras_hub.src.models.retinanet.retinanet_image_converter import (
RetinaNetImageConverter,
)
from keras_hub.src.models.sam.sam_image_converter import SAMImageConverter
from keras_hub.src.models.sam.sam_mask_decoder import SAMMaskDecoder
from keras_hub.src.models.sam.sam_prompt_encoder import SAMPromptEncoder
Expand Down
11 changes: 11 additions & 0 deletions keras_hub/api/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,6 +167,10 @@
from keras_hub.src.models.image_classifier_preprocessor import (
ImageClassifierPreprocessor,
)
from keras_hub.src.models.image_object_detector import ImageObjectDetector
from keras_hub.src.models.image_object_detector_preprocessor import (
ImageObjectDetectorPreprocessor,
)
from keras_hub.src.models.image_segmenter import ImageSegmenter
from keras_hub.src.models.image_segmenter_preprocessor import (
ImageSegmenterPreprocessor,
Expand Down Expand Up @@ -233,6 +237,13 @@
from keras_hub.src.models.resnet.resnet_image_classifier_preprocessor import (
ResNetImageClassifierPreprocessor,
)
from keras_hub.src.models.retinanet.retinanet_backbone import RetinaNetBackbone
from keras_hub.src.models.retinanet.retinanet_object_detector import (
RetinaNetObjectDetector,
)
from keras_hub.src.models.retinanet.retinanet_object_detector_preprocessor import (
RetinaNetObjectDetectorPreprocessor,
)
from keras_hub.src.models.roberta.roberta_backbone import RobertaBackbone
from keras_hub.src.models.roberta.roberta_masked_lm import RobertaMaskedLM
from keras_hub.src.models.roberta.roberta_masked_lm_preprocessor import (
Expand Down
2 changes: 2 additions & 0 deletions keras_hub/src/bounding_box/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# TODO: Once all bounding boxes are moved to keras repostory remove the
# bounding box folder.
114 changes: 102 additions & 12 deletions keras_hub/src/bounding_box/converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,29 +20,74 @@ class RequiresImagesException(Exception):
ALL_AXES = 4


def _encode_box_to_deltas(
def encode_box_to_deltas(
anchors,
boxes,
anchor_format: str,
box_format: str,
anchor_format,
box_format,
encoding_format="center_yxhw",
variance=None,
image_shape=None,
):
"""Converts bounding_boxes from `center_yxhw` to delta format."""
"""Encodes bounding boxes relative to anchors as deltas.

This function calculates the deltas that represent the difference between
bounding boxes and provided anchors. Deltas encode the offsets and scaling
factors to apply to anchors to obtain the target boxes.

Boxes and anchors are first converted to the specified `encoding_format`
(defaulting to `center_yxhw`) for consistent delta representation.

Args:
anchors: `Tensors`. Anchor boxes with shape of `(N, 4)` where N is the
number of anchors.
boxes: `Tensors` Bounding boxes to encode. Boxes can be of be shape
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

with shape (B, N, 4) for batched boxes or (N, 4) for a single set of boxes. N should match the number of anchors.

`(B, N, 4)` or `(N, 4)`.
anchor_format: str. The format of the input `anchors`
(e.g., "xyxy", "xywh", etc.).
box_format: str. The format of the input `boxes`
(e.g., "xyxy", "xywh", etc.).
encoding_format: str. The intermediate format to which boxes and anchors
are converted before delta calculation. Defaults to "center_yxhw".
variance: `List[float]`. A 4-element array/tensor representing variance
factors to scale the box deltas. If provided, the calculated deltas
are divided by the variance. Defaults to None.
image_shape: `Tuple[int]`. The shape of the image (height, width, 3).
When using relative bounding box format for `box_format` the
`image_shape` is used for normalization.
Returns:
Encoded box deltas. The return type matches the `encode_format`.

Raises:
ValueError: If `variance` is not None and its length is not 4.
ValueError: If `encoding_format` is not `"center_xywh"` or
`"center_yxhw"`.

"""
if variance is not None:
variance = ops.convert_to_tensor(variance, "float32")
var_len = variance.shape[-1]

if var_len != 4:
raise ValueError(f"`variance` must be length 4, got {variance}")

if encoding_format not in ["center_xywh", "center_yxhw"]:
raise ValueError(
"`encoding_format` should be one of 'center_xywh' or 'center_yxhw', "
f"got {encoding_format}"
)

encoded_anchors = convert_format(
anchors,
source=anchor_format,
target="center_yxhw",
target=encoding_format,
image_shape=image_shape,
)
boxes = convert_format(
boxes, source=box_format, target="center_yxhw", image_shape=image_shape
boxes,
source=box_format,
target=encoding_format,
image_shape=image_shape,
)
anchor_dimensions = ops.maximum(
encoded_anchors[..., 2:], keras.backend.epsilon()
Expand All @@ -61,27 +106,72 @@ def _encode_box_to_deltas(
return boxes_delta


def _decode_deltas_to_boxes(
def decode_deltas_to_boxes(
anchors,
boxes_delta,
anchor_format: str,
box_format: str,
anchor_format,
box_format,
encoded_format="center_yxhw",
variance=None,
image_shape=None,
):
"""Converts bounding_boxes from delta format to `center_yxhw`."""
"""Converts bounding boxes from delta format to the specified `box_format`.

This function decodes bounding box deltas relative to anchors to obtain the
final bounding box coordinates. The boxes are encoded in a specific
`encoded_format` (center_yxhw by default) during the decoding process.
This allows flexibility in how the deltas are applied to the anchors.

Args:
anchors: Can be `Tensors` or `Dict[Tensors]` where keys are level
indicies and values are corresponding anchor boxes.
The shape of the array/tensor should be `(N, 4)` where N is the
number of anchors.
boxes_delta Can be `Tensors` or `Dict[Tensors]` Bounding box deltas
must have the same type and structure as `anchors`. The
shape of the array/tensor can be `(N, 4)` or `(B, N, 4)` where N is
the number of boxes.
anchor_format: str. The format of the input `anchors`.
(e.g., `"xyxy"`, `"xywh"`, etc.)
box_format: str. The desired format for the output boxes.
(e.g., `"xyxy"`, `"xywh"`, etc.)
encoded_format: str. Raw output format from regression head. Defaults
to `"center_yxhw"`.
variance: `List[floats]`. A 4-element array/tensor representing
variance factors to scale the box deltas. If provided, the deltas
are multiplied by the variance before being applied to the anchors.
Defaults to None.
image_shape: The shape of the image (height, width). This is needed
if normalization to image size is required when converting between
formats. Defaults to None.

Returns:
Decoded box coordinates. The return type matches the `box_format`.

Raises:
ValueError: If `variance` is not None and its length is not 4.
ValueError: If `encoded_format` is not `"center_xywh"` or
`"center_yxhw"`.

"""
if variance is not None:
variance = ops.convert_to_tensor(variance, "float32")
var_len = variance.shape[-1]

if var_len != 4:
raise ValueError(f"`variance` must be length 4, got {variance}")

if encoded_format not in ["center_xywh", "center_yxhw"]:
raise ValueError(
f"`encoded_format` should be 'center_xywh' or 'center_yxhw', "
f"but got '{encoded_format}'."
)

def decode_single_level(anchor, box_delta):
encoded_anchor = convert_format(
anchor,
source=anchor_format,
target="center_yxhw",
target=encoded_format,
image_shape=image_shape,
)
if variance is not None:
Expand All @@ -97,7 +187,7 @@ def decode_single_level(anchor, box_delta):
)
box = convert_format(
box,
source="center_yxhw",
source=encoded_format,
target=box_format,
image_shape=image_shape,
)
Expand Down
87 changes: 87 additions & 0 deletions keras_hub/src/models/image_object_detector.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import keras

from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.task import Task


@keras_hub_export("keras_hub.models.ImageObjectDetector")
class ImageObjectDetector(Task):
"""Base class for all image object detection tasks.

The `ImageObjectDetector` tasks wrap a `keras_hub.models.Backbone` and
a `keras_hub.models.Preprocessor` to create a model that can be used for
object detection. `ImageObjectDetector` tasks take an additional
`num_classes` argument, controlling the number of predicted output classes.

To fine-tune with `fit()`, pass a dataset containing tuples of `(x, y)`
labels where `x` is a string and `y` is dictionary with `boxes` and
`classes`.

All `ImageObjectDetector` tasks include a `from_preset()` constructor which
can be used to load a pre-trained config and weights.
"""

def compile(
self,
optimizer="auto",
box_loss="auto",
classification_loss="auto",
metrics=None,
**kwargs,
):
"""Configures the `ImageObjectDetector` task for training.

The `ImageObjectDetector` task extends the default compilation signature of
`keras.Model.compile` with defaults for `optimizer`, `loss`, and
`metrics`. To override these defaults, pass any value
to these arguments during compilation.

Args:
optimizer: `"auto"`, an optimizer name, or a `keras.Optimizer`
instance. Defaults to `"auto"`, which uses the default optimizer
for the given model and task. See `keras.Model.compile` and
`keras.optimizers` for more info on possible `optimizer` values.
box_loss: `"auto"`, a loss name, or a `keras.losses.Loss` instance.
Defaults to `"auto"`, where a
`keras.losses.Huber` loss will be
applied for the object detector task. See
`keras.Model.compile` and `keras.losses` for more info on
possible `loss` values.
classification_loss: `"auto"`, a loss name, or a `keras.losses.Loss`
instance. Defaults to `"auto"`, where a
`keras.losses.BinaryFocalCrossentropy` loss will be
applied for the object detector task. See
`keras.Model.compile` and `keras.losses` for more info on
possible `loss` values.
metrics: `a list of metrics to be evaluated by
the model during training and testing. Defaults to `None`.
See `keras.Model.compile` and `keras.metrics` for
more info on possible `metrics` values.
**kwargs: See `keras.Model.compile` for a full list of arguments
supported by the compile method.
"""
if optimizer == "auto":
optimizer = keras.optimizers.Adam(5e-5)
if box_loss == "auto":
box_loss = keras.losses.Huber(reduction="sum")
if classification_loss == "auto":
activation = getattr(self, "activation", None)
activation = keras.activations.get(activation)
from_logits = activation != keras.activations.sigmoid
classification_loss = keras.losses.BinaryFocalCrossentropy(
from_logits=from_logits, reduction="sum"
)
if metrics is not None:
raise ValueError("User metrics not yet supported")

losses = {
"bbox_regression": box_loss,
"cls_logits": classification_loss,
}

super().compile(
optimizer=optimizer,
loss=losses,
metrics=metrics,
**kwargs,
)
57 changes: 57 additions & 0 deletions keras_hub/src/models/image_object_detector_preprocessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import keras

from keras_hub.src.api_export import keras_hub_export
from keras_hub.src.models.preprocessor import Preprocessor
from keras_hub.src.utils.tensor_utils import preprocessing_function


@keras_hub_export("keras_hub.models.ImageObjectDetectorPreprocessor")
class ImageObjectDetectorPreprocessor(Preprocessor):
"""Base class for object detector preprocessing layers.

`ImageObjectDetectorPreprocessor` tasks wraps a
`keras_hub.layers.Preprocessor` to create a preprocessing layer for
object detection tasks. It is intended to be paired with a
`keras_hub.models.ImageObjectDetector` task.

All `ImageObjectDetectorPreprocessor` take three inputs, `x`, `y`, and
`sample_weight`. `x`, the first input, should always be included. It can
be a image or batch of images. See examples below. `y` and `sample_weight`
are optional inputs that will be passed through unaltered. Usually, `y` will
be the a dict of `{"boxes": Tensor(batch_size, num_boxes, 4),
"classes": (batch_size, num_boxes)}.

The layer will returns either `x`, an `(x, y)` tuple if labels were provided,
or an `(x, y, sample_weight)` tuple if labels and sample weight were
provided. `x` will be the input images after all model preprocessing has
been applied.

All `ImageObjectDetectorPreprocessor` tasks include a `from_preset()`
constructor which can be used to load a pre-trained config and vocabularies.
You can call the `from_preset()` constructor directly on this base class, in
which case the correct class for your model will be automatically
instantiated.

Args:
image_converter: Preprocessing pipeline for images.

Examples.
```python
preprocessor = keras_hub.models.ImageObjectDetectorPreprocessor.from_preset(
"retinanet_resnet50",
)
"""

def __init__(
self,
image_converter=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_converter = image_converter

@preprocessing_function
def call(self, x, y=None, sample_weight=None):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in this case, the bounding box updates needs to be addressed.

if self.image_converter:
x = self.image_converter(x)
return keras.utils.pack_x_y_sample_weight(x, y, sample_weight)
Loading
Loading